(4x – 5 ) chia het (2x – 1 ) 7 chia het ( x – 1)

(4x – 5 ) chia het (2x – 1 )
7 chia het ( x – 1)

1 bình luận về “(4x – 5 ) chia het (2x – 1 ) 7 chia het ( x – 1)”

  1. #Chanhh
    ( 4x – 5 ) \vdots ( 2x – 1 )
    => 4x – 5 = 4x – 2 – 3
                    = 2(2x – 1 ) – 3
    @ Vì 2(2x – 1 )  \vdots (2x – 1 )
    Để (4x – 5 ) \vdots (2x – 1 )
    Thì 3 \vdots ( 2x – 1 )
    => ( 2x – 1 ) in U(3)
    U(3) = { 1 ; 3 }
    Vậy ( 2x – 1 ) in { 1 ; 3}
    @ 2x – 1= 1                             
    => 2x = 1 + 1
    => 2x = 2
    => x = 2/2
    => x = 1
    @ 2x – 1 = 3
    => 2x = 3 + 1
    => 2x = 4
    => x = 4/2
    => x = 2
    Vậy x in NN nên x in { 1 ; 2}
    __
    7 \vdots ( x – 1)
    @ Vì 7 \vdots ( x – 1)
    Nên ( x – 1) in U(7)
    U(7) = { 1 ;7}
    Vậy (x – 1 ) in { 1 ; 7 }
    @ x – 1 = 1
    => x = 1 + 1
    => x =2
    @x – 1 = 7
    => x = 7 + 1
    => x = 8
    Vậy x in NN nên x in { 2 ; 8 }

    Trả lời

Viết một bình luận

Câu hỏi mới