x+4/2019+x+ 3/2020=x+2/2021+x+ 1/2022

x+4/2019+x+ 3/2020=x+2/2021+x+ 1/2022

2 bình luận về “x+4/2019+x+ 3/2020=x+2/2021+x+ 1/2022”

  1. Giải đáp + Lời giải và giải thích chi tiết:
              (x + 4)/2019 + (x + 3)/2020 = (x + 2)/2021 + (x + 1)/2022
      <=> (x + 4)/2019 + (x + 3)/2020 + 2 = (x + 2)/2021 + (x + 1)/2022 + 2
      <=> ((x + 4)/2019 + 1) + ((x + 3)/2020 + 1) = ((x + 2)/2021 + 1) + ((x + 1)/2022 + 1)
      <=> ((x + 4)/2019 + 2019/2019) + ((x + 3)/2020 + 2020/2020) = ((x + 2)/2021 + 2021/2021) + ((x + 1)/2022 + 2022/2022)
      <=> (x + 4 + 2019)/2019 + (x + 3 + 2020)/2020 = (x + 2 + 2021)/2021 + (x + 1 + 2022)/2022
      <=> (x + 2023)/2019 + (x + 2023)/2020 = (x + 2023)/2021 + (x + 2023)/2022
      <=> (x + 2023)/2019 + (x + 2023)/2020 – (x + 2023)/2021 – (x + 2023)/2022 = 0
      <=> (x + 2023)(1/2019 + 1/2020 – 1/2021 – 1/2022) = 0
      <=> x + 2023 = 0   ( Vì 1/2019 + 1/2020 – 1 /2021 – 1/2022 \ne 0)
      <=> x = -2023
              Vậy: x = -2023
    ~MioWiky~

    Trả lời
  2. (x+4)/2019+(x+3)/2020=(x+2)/2021+(x+1)/2022
    <=> ((x+4)/2019+1)+((x+3)/2020+1)-((x+2)/2021+1)-((x+1)/2022+1)=0
    <=> (x+2023)/2019+(x+2023)/2020-(x+2023)/2021-(x+2023)/2022=0
    <=> (x+2023) . (1/2019+1/2020-1/2021-1/2022)=0
     Mà (1/2019+1/2020-1/2021-1/2022)\ne0
    <=> x+2023=0
    <=> x=-2023
    Vậy x=-2023
    $\color{red}{\text{@Hy~Hoctotnha}}$ 

    Trả lời

Viết một bình luận

Câu hỏi mới