Trang chủ » Hỏi đáp » Môn Toán $2^{x}$+$2^{x+2}$+$2^{x+3}$+…+$2^{2020}$=$2^{2024}$-8 02/06/2023 $2^{x}$+$2^{x+2}$+$2^{x+3}$+…+$2^{2020}$=$2^{2024}$-8
Giải đáp: x=3 $Giải.Thích.Các.Bước.Giải$ 2^x+2^x+2+…+2^x+2020=2^2024-8 1.2^x+2^x.2^2+…+2^x.2^2020=2^2024-8 2^x.(1+2^2+….+2^2020)=2^2024-8 Đặt A=1+2^2+….+2^2020 2A=2.(1+2^2+….+2^2020) 2A=2+2^3+…+2^2021 2A-A=(2+2^3+…+2^2021)-(1+2^2+….+2^2020) A=2^2021-1 Ta có 2^x.(2^2021-1)=2^2024-8 2^x.(2^2021-1)=2^2021.1.8-8 2^x.(2^2021-1)=8.(2^2021-1) 2^x=8 2^x=2^3 $Vậy.x=3$ Trả lời
1 bình luận về “$2^{x}$+$2^{x+2}$+$2^{x+3}$+…+$2^{2020}$=$2^{2024}$-8”