Trang chủ » Hỏi đáp » Môn Toán Tính tổng S = 1 + 2 + 2^2 + 2^3 + 2^4 + + 2^100 04/06/2023 Tính tổng S = 1 + 2 + 2^2 + 2^3 + 2^4 + + 2^100
S=1+2+2^2+2^3+…+2^100 => 2S=2+2^2+2^3+2^4+…+2^101 => 2S-S=S =(2+2^2+2^3+2^4+…+2^101)-(1+2+2^2+2^3+…+2^100) =2^101-1 Vậy S=2^101-1 $\\$ \bb\color{#3a34eb}{\text{@hoanganhnguyen09302}} Trả lời
S = 1 + 2 + 2^2 + 2^3 + 2^4 + …..+ 2^100 =>2S=2+2^2+2^3+2^4+2^5+…+2^101 =>2S-S=2+2^2+2^3+2^4+2^5+…+2^101-(1 + 2 + 2^2 + 2^3 + 2^4 + ……+ 2^100) =>S=2+2^2+2^3+2^4+2^5+…+2^101-1 – 2 – 2^2 – 2^3 – 2^4 -…… – 2^100 =>S=2^101-1 Vậy S=2^101-1 Trả lời
2 bình luận về “Tính tổng S = 1 + 2 + 2^2 + 2^3 + 2^4 + + 2^100”