Trang chủ » Hỏi đáp » Môn Toán Giải các BPT sau: `a). (x-1)^2+(x-3)^2>x^2+(x+1)^2` `b). {(x-2)}/5+{3(x-1)^2}/{10}<{x^2+1}/2` 07/06/2023 Giải các BPT sau: `a). (x-1)^2+(x-3)^2>x^2+(x+1)^2` `b). {(x-2)}/5+{3(x-1)^2}/{10}<{x^2+1}/2`
Giải đáp:$\begin{array}{l}a)\,x < \dfrac{9}{{10}}\\b)x \in R\end{array}$ Lời giải và giải thích chi tiết: $\begin{array}{l}a){\left( {x – 1} \right)^2} + {\left( {x – 3} \right)^2} > {x^2} + {\left( {x + 1} \right)^2}\\ \Leftrightarrow {x^2} – 2x + 1 + {x^2} – 6x + 9\\ > {x^2} + {x^2} + 2x + 1\\ \Leftrightarrow 2{x^2} – 8x + 10 > 2{x^2} + 2x + 1\\ \Leftrightarrow 2{x^2} – 2{x^2} – 8x – 2x > 1 – 10\\ \Leftrightarrow – 10x > – 9\\ \Leftrightarrow x < \dfrac{9}{{10}}\\Vay\,x < \dfrac{9}{{10}}\\b)\dfrac{{x – 2}}{5} + \dfrac{{3{{\left( {x – 1} \right)}^2}}}{{10}} < \dfrac{{{x^2} + 1}}{2}\\ \Leftrightarrow \dfrac{{2.\left( {x – 2} \right) + 3.\left( {{x^2} – 2x + 1} \right)}}{{10}} < \dfrac{{5\left( {{x^2} + 1} \right)}}{{10}}\\ \Leftrightarrow 2x – 4 + 3{x^2} – 6x + 3 < 5{x^2} + 5\\ \Leftrightarrow 3{x^2} – 4x – 1 < 5{x^2} + 5\\ \Leftrightarrow 5{x^2} – 3{x^2} + 4x + 5 + 1 > 0\\ \Leftrightarrow 2{x^2} + 4x + 6 > 0\\ \Leftrightarrow {x^2} + 2x + 3 > 0\\ \Leftrightarrow {\left( {x + 1} \right)^2} + 2 > 0\left( {tm} \right)\\Vay\,x \in R\end{array}$ Trả lời
a)\,x < \dfrac{9}{{10}}\\
b)x \in R
\end{array}$
a){\left( {x – 1} \right)^2} + {\left( {x – 3} \right)^2} > {x^2} + {\left( {x + 1} \right)^2}\\
\Leftrightarrow {x^2} – 2x + 1 + {x^2} – 6x + 9\\
> {x^2} + {x^2} + 2x + 1\\
\Leftrightarrow 2{x^2} – 8x + 10 > 2{x^2} + 2x + 1\\
\Leftrightarrow 2{x^2} – 2{x^2} – 8x – 2x > 1 – 10\\
\Leftrightarrow – 10x > – 9\\
\Leftrightarrow x < \dfrac{9}{{10}}\\
Vay\,x < \dfrac{9}{{10}}\\
b)\dfrac{{x – 2}}{5} + \dfrac{{3{{\left( {x – 1} \right)}^2}}}{{10}} < \dfrac{{{x^2} + 1}}{2}\\
\Leftrightarrow \dfrac{{2.\left( {x – 2} \right) + 3.\left( {{x^2} – 2x + 1} \right)}}{{10}} < \dfrac{{5\left( {{x^2} + 1} \right)}}{{10}}\\
\Leftrightarrow 2x – 4 + 3{x^2} – 6x + 3 < 5{x^2} + 5\\
\Leftrightarrow 3{x^2} – 4x – 1 < 5{x^2} + 5\\
\Leftrightarrow 5{x^2} – 3{x^2} + 4x + 5 + 1 > 0\\
\Leftrightarrow 2{x^2} + 4x + 6 > 0\\
\Leftrightarrow {x^2} + 2x + 3 > 0\\
\Leftrightarrow {\left( {x + 1} \right)^2} + 2 > 0\left( {tm} \right)\\
Vay\,x \in R
\end{array}$