`[2/(3x)-2/(x+1).((x+1)/(3x)-x-1)]:(x-1)/x`

`[2/(3x)-2/(x+1).((x+1)/(3x)-x-1)]:(x-1)/x`

2 bình luận về “`[2/(3x)-2/(x+1).((x+1)/(3x)-x-1)]:(x-1)/x`”

  1. [2/(3x) – 2/(x+1) * ((x+1))/(3x) – x -1 ] : (x-1)/(x)               ĐKXĐ : x \ne 0;+-1
    = [ 2/(3x) – 2/(x+1) * ((x+1)/(3x) – (3x^2)/(3x) – (3x)/(3x) ] : (x-1)/(x)
    = [2/(3x) – 2/(x+1) * (-3x^2 -2x+1)/(3x) ] : (x-1)/x
    = ( 2/(3x) – (2*(-3x^2 -2x+1))/((x+1)*3x) ) : (x-1)/x
    = ( 2/(3x) – (-2(3x-1))/(3x) ) : (x-1)/x
    = (2 +6x -2)/3x * (x)/(x-1)
    =  2 * (x)/(x-1)
    = (2x)/(x-1)

    Trả lời

Viết một bình luận

Câu hỏi mới