b1: tính nhanh A=1+1/3+1/3^2+…..+1/3^n B=1/2+1/2^2+1/2^3+…+1/2^100

b1: tính nhanh
A=1+1/3+1/3^2+…..+1/3^n
B=1/2+1/2^2+1/2^3+…+1/2^100

2 bình luận về “b1: tính nhanh A=1+1/3+1/3^2+…..+1/3^n B=1/2+1/2^2+1/2^3+…+1/2^100”

  1. Ta có: A = 1 + 1/3 + 1/(3^2) + … + 1/(3^n)
    => 3A = 3 + 1 + 1/3 + … + 1/(3^(n- 1))
    => 3A – A = ( 3 + 1 + 1/3 + … + 1/(3^(n- 1))) – (1 + 1/3 + 1/(3^2) + … + 1/(3^n))
    => 2A = 3 – 1/(3^n)
    => A = (3 – 1/(3^n))/2
    Vậy A = (3 – 1/(3^n))/2
    ————————————-
    Ta có: B = 1/2 + 1/(2^2) + 1/(2^3) + … + 1/(2^(100))
    => 2B = 1 + 1/2 + 1/(2^2) + … + 1/(2^(99))
    => 2B – B = (1 + 1/2 + 1/(2^2) + … + 1/(2^(99))) – (1/2 + 1/(2^2) + 1/(2^3) + … + 1/(2^(100)))
    => B = 1 – 1/(2^(100))
    Vậy B = 1 – 1/(2^(100))
    $#duong612009$

    Trả lời
  2. Gửi e 
    B = 1/2 + 1/(2^2) + 1/(2^3) + … + 1/(2^(100))
    => 2B = 1 + 1/2 + 1/(2^2) + … + 1/(2^(99))
    => 2B – B = (1 + 1/2 + 1/(2^2) + … + 1/(2^(99))) – (1/2 + 1/(2^2) + 1/(2^3) + … + 1/(2^(100)))
    => B = 1 – 1/(2^(100))

    Trả lời

Viết một bình luận

Câu hỏi mới