Trang chủ » Hỏi đáp » Môn Toán A=(1+ 1/2)x(1+1/3)x(1+1/4)x………x(1+1/2022) 01/07/2023 A=(1+ 1/2)x(1+1/3)x(1+1/4)x………x(1+1/2022)
A =( 1 + $\frac{1}{2}$ ) x (1 + $\frac{1}{3}$) x ( 1 + $\frac{1}{4)}$) x … x ( 1 + $\frac{1}{2022}$ ) A =$\frac{3}{2}$ x $\frac{4}{3}$ x $\frac{5}{4}$ x … x $\frac{2023}{2022}$ A = $\frac{3 x 4 x 5 x… x 2023}{2 x 3 x 4x…x2022}$ A = $\frac{2023}{2}$ A = 1011,5 Vì 1011,5 > 1000 nên A > 1000 Vậy A > 1000 @lethainhatduong111#hoidap247 Trả lời
A= (1 + 1/2) ( 1 + 1/3) ( 1 + 1/4) … ( 1 + 1/2022) = 3/2 . 4/3 . 5/4 … 2023/2022 = (3.4.5…2023)/(2.3.4…2022) =(2023)/(2) = 1011,5 Mà 1011,5 > 1000 => A > 1000. Trả lời
2 bình luận về “A=(1+ 1/2)x(1+1/3)x(1+1/4)x………x(1+1/2022)”