Trang chủ » Hỏi đáp » Môn Toán Tính bằng 2 cách 3/22×3/11×24,(1/2+1/3)×2/5,3/5×17/21+17/21×2/5 04/10/2023 Tính bằng 2 cách 3/22×3/11×24,(1/2+1/3)×2/5,3/5×17/21+17/21×2/5
Giải đáp: $\begin{array}{l}\dfrac{3}{{22}} \times \dfrac{3}{{11}} \times 24\\ = \left( {\dfrac{3}{{22}} \times \dfrac{3}{{11}}} \right) \times 24\\ = \dfrac{9}{{242}} \times 24\\ = \dfrac{{9 \times 24}}{{242 \times 1}}\\ = \dfrac{{9 \times 12}}{{121}}\\ = \dfrac{{108}}{{121}}\\C2:\dfrac{3}{{22}} \times \dfrac{3}{{11}} \times 24\\ = \left( {\dfrac{3}{{22}} \times 24} \right) \times \dfrac{3}{{11}}\\ = \dfrac{{3 \times 24}}{{22}} \times \dfrac{3}{{11}}\\ = \dfrac{{3 \times 12}}{{11}} \times \dfrac{3}{{11}}\\ = \dfrac{{36}}{{11}} \times \dfrac{3}{{11}}\\ = \dfrac{{108}}{{121}}\\C1:\left( {\dfrac{1}{2} + \dfrac{1}{3}} \right) \times \dfrac{2}{5}\\ = \left( {\dfrac{3}{6} + \dfrac{2}{6}} \right) \times \dfrac{2}{5}\\ = \dfrac{5}{6} \times \dfrac{2}{5}\\ = \dfrac{{5 \times 2}}{{6 \times 5}}\\ = \dfrac{1}{3}\\C2:\left( {\dfrac{1}{2} + \dfrac{1}{3}} \right) \times \dfrac{2}{5}\\ = \dfrac{1}{2} \times \dfrac{2}{5} + \dfrac{1}{3} \times \dfrac{2}{5}\\ = \dfrac{1}{5} + \dfrac{2}{{15}}\\ = \dfrac{3}{{15}} + \dfrac{2}{{15}}\\ = \dfrac{5}{{15}} = \dfrac{1}{3}\\c1:\dfrac{3}{5} \times \dfrac{{17}}{{21}} + \dfrac{{17}}{{21}} \times \dfrac{2}{5}\\ = \dfrac{{51}}{{105}} + \dfrac{{34}}{{105}}\\ = \dfrac{{85}}{{105}}\\ = \dfrac{{17}}{{21}}\\C2:\dfrac{3}{5} \times \dfrac{{17}}{{21}} + \dfrac{{17}}{{21}} \times \dfrac{2}{5}\\ = \dfrac{{17}}{{21}} \times \left( {\dfrac{3}{5} + \dfrac{2}{5}} \right)\\ = \dfrac{{17}}{{21}} \times \dfrac{5}{5}\\ = \dfrac{{17}}{{21}} \times 1\\ = \dfrac{{17}}{{21}}\end{array}$ Trả lời
\dfrac{3}{{22}} \times \dfrac{3}{{11}} \times 24\\
= \left( {\dfrac{3}{{22}} \times \dfrac{3}{{11}}} \right) \times 24\\
= \dfrac{9}{{242}} \times 24\\
= \dfrac{{9 \times 24}}{{242 \times 1}}\\
= \dfrac{{9 \times 12}}{{121}}\\
= \dfrac{{108}}{{121}}\\
C2:\dfrac{3}{{22}} \times \dfrac{3}{{11}} \times 24\\
= \left( {\dfrac{3}{{22}} \times 24} \right) \times \dfrac{3}{{11}}\\
= \dfrac{{3 \times 24}}{{22}} \times \dfrac{3}{{11}}\\
= \dfrac{{3 \times 12}}{{11}} \times \dfrac{3}{{11}}\\
= \dfrac{{36}}{{11}} \times \dfrac{3}{{11}}\\
= \dfrac{{108}}{{121}}\\
C1:\left( {\dfrac{1}{2} + \dfrac{1}{3}} \right) \times \dfrac{2}{5}\\
= \left( {\dfrac{3}{6} + \dfrac{2}{6}} \right) \times \dfrac{2}{5}\\
= \dfrac{5}{6} \times \dfrac{2}{5}\\
= \dfrac{{5 \times 2}}{{6 \times 5}}\\
= \dfrac{1}{3}\\
C2:\left( {\dfrac{1}{2} + \dfrac{1}{3}} \right) \times \dfrac{2}{5}\\
= \dfrac{1}{2} \times \dfrac{2}{5} + \dfrac{1}{3} \times \dfrac{2}{5}\\
= \dfrac{1}{5} + \dfrac{2}{{15}}\\
= \dfrac{3}{{15}} + \dfrac{2}{{15}}\\
= \dfrac{5}{{15}} = \dfrac{1}{3}\\
c1:\dfrac{3}{5} \times \dfrac{{17}}{{21}} + \dfrac{{17}}{{21}} \times \dfrac{2}{5}\\
= \dfrac{{51}}{{105}} + \dfrac{{34}}{{105}}\\
= \dfrac{{85}}{{105}}\\
= \dfrac{{17}}{{21}}\\
C2:\dfrac{3}{5} \times \dfrac{{17}}{{21}} + \dfrac{{17}}{{21}} \times \dfrac{2}{5}\\
= \dfrac{{17}}{{21}} \times \left( {\dfrac{3}{5} + \dfrac{2}{5}} \right)\\
= \dfrac{{17}}{{21}} \times \dfrac{5}{5}\\
= \dfrac{{17}}{{21}} \times 1\\
= \dfrac{{17}}{{21}}
\end{array}$