Trang chủ » Hỏi đáp » Môn Toán Tim x: a/ (x-3)^2+x(2-x)=1 b/ 3x(x-5)+2x-10=0 19/05/2024 Tim x: a/ (x-3)^2+x(2-x)=1 b/ 3x(x-5)+2x-10=0
\bb a) (x-3)^2+x.(2-x)=1 <=>x^2-6x+9+2x-x^2=1 <=>-4x=1-9 <=>-4x=-8 <=>x=2 Vậy x=2 $\\$ \bb b) 3x.(x-5)+2x-10=0 <=>3x.(x-5)+2.(x-5)=0 <=>(x-5).(3x+2)=0 <=>\(\left[ \begin{array}{l}x-5=0\\3x+2=0\end{array} \right.\) <=>\(\left[ \begin{array}{l}x=5\\x=-\dfrac{2}{3}\end{array} \right.\) Vậy x={5; -2/3} Trả lời
a/ (x-3)^2+x(2-x)=1 x^2 – 6x + 9 + 2x – x^2 = 1 (x^2 – x^2)+(-6x+2x) = 1 – 9 -4x = -8 x = $\dfrac{-8}{-4}$ x = 2 b/ 3x(x-5)+2x-10=0 3x(x-5) + 2(x-5) = 0 (x-5) (3x+2) = 0 x-5= 0 hoặc 3x + 2 = 0 x = 5 hoặc 3x = -2 x = 5 hoặc x = $\dfrac{-2}{3}$ Trả lời
2 bình luận về “Tim x: a/ (x-3)^2+x(2-x)=1 b/ 3x(x-5)+2x-10=0”