Tìm `x` : `(x-1)/2022+(x-2)/2021+(x-3)/2020 = (x+4034)/2019`

Tìm `x` : `(x-1)/2022+(x-2)/2021+(x-3)/2020 = (x+4034)/2019`

1 bình luận về “Tìm `x` : `(x-1)/2022+(x-2)/2021+(x-3)/2020 = (x+4034)/2019`”

  1. (x-1)/(2022)+(x-2)/(2021)+(x-3)/(2020)=(x+4034)/(2019)
    ⇔ ((x-1)/(2022)-1)+((x-2)/(2021)-1)+((x-3)/2020 -1)=(x+4034)/(2019)-3
    ⇔ (x-1-2022)/2022+(x-2-2021)/2021+(x-3-2020)/2020=(x+4034-3.2019)/2019
    ⇔ (x-2023)/2022+(x-2023)/2021+(x-2023)/2020=(x-2023)/2019
    ⇔ (x-2023)/2022+(x-2023)/2021+(x-2023)/2020-(x-2023)/2019=0
    ⇔ (x-2023) . (1/2020 +1/2021+1/2020-1/2019)=0
    Vì 1/2020 +1/2021+1/2020-1/2019 \ne 0
    ⇒ x-2023=0
    ⇒ x=2023
    Vậy x=2023.
     

    Trả lời

Viết một bình luận

Câu hỏi mới