Trang chủ » Hỏi đáp » Môn Toán tìm GTLN a) B= x – x^2 +6 b) C= -4y^2 + 8y -12 30/09/2024 tìm GTLN a) B= x – x^2 +6 b) C= -4y^2 + 8y -12
B = x – x^2+6 B = – ( x^2 – x – 6 ) B = – ( x^2 – x ) – 6 B = – ( x^2 – 2 . x . 1/2 + 1/4 – 1/4 ) – 6 B = – ( x – 1/2)^2 + 1/4 – 6 B = – ( x – 1 / 2 )^2 – 23/4 Do – ( x – 1 / 2 )^2 ≥ 0 => – ( x – 1 / 2 )^2 – 23/4 ≥ – 23/4 Dấu = xảy ra khi : ( x – 1/2 ) = 0 x = 1/2 Vậy max B = – 23/4 khi x = 1/2 ————————- C = – 4y^2 + 8y – 12 C = – ( 4y^2 – 8y + 12 ) C = – ( 4y^2 – 8y ) + 12 C = – [(2y)^2 – 2 . 2y . 2 + 4 – 4 ] + 12 C = – ( 2y – 2 )^2 + 4 + 12 C = – ( 2y – 2 ) ^2 + 16 Do – ( 2y – 2 ) ^2 ≥ ) => – ( 2y – 2 ) ^2 + 16 ≥ 16 Dấu = xảy ra khi : ( 2y – 2 ) = 0 =>2y = 2 => y = 1 Vậy max C = 16 khi y = 1 Trả lời
a) B = x-$x^{2}$+6 => -4B = $4x^{2}-2.2x.1+1^{2}$-25 => -4B = $(2x-1)^{2}$-25 Vì $(2x-2)^{2}$≥0 ∀ x => -4B ≥ -25 ∀ x => B ≤ $\frac{25}{4}$ (1) (1) xảy ra <=> 2x-1 = 0 <=> 2x = 1 <=> x = $\frac{1}{2}$ b) C = $-4y^{2}+8y-12$ => -C = $(2y)^{2}-2.2y.2+2^{2}+8$ => -C = $(2y-1)^{2}+8$ Vì $(2y-1)^{2}$ ≥ 0 ∀ y => -C ≥ 8 ∀ y => C ≤ -8 (2) (2) xảy ra <=> 2y-1=0 <=> 2y = 1 <=> y = $\frac{1}{2}$ Trả lời
=> – ( 2y – 2 ) ^2 + 16 ≥ 16