tìm x biết a ) 5x^2 – 10x^2 = 0 b) 16x ( x -7 ) – x + 7 = 0 c) ( 3x – 2 ) ^2 ( 2x + 3 ) ^2 = 0 d) x^2 = 5x + 14

tìm x biết a ) 5x^2 – 10x^2 = 0
b) 16x ( x -7 ) – x + 7 = 0
c) ( 3x – 2 ) ^2 ( 2x + 3 ) ^2 = 0
d) x^2 = 5x + 14

1 bình luận về “tìm x biết a ) 5x^2 – 10x^2 = 0 b) 16x ( x -7 ) – x + 7 = 0 c) ( 3x – 2 ) ^2 ( 2x + 3 ) ^2 = 0 d) x^2 = 5x + 14”

  1. Lời giải:
    a, 5x^2 – 10x^2 = 0
      <=> x^2(5 – 10) = 0
      <=> -5x^2 = 0
      <=> x = 0
    Vậy x = 0
    b, 16x(x – 7) – x + 7 = 0
      <=> 16x(x – 7) – (x – 7) = 0
      <=> (x – 7)(16x – 1) = 0
      <=> $\left[\begin{matrix} x – 7 = 0\\ 16x – 1 = 0\end{matrix}\right.$
      <=> $\left[\begin{matrix} x = 7\\ x = \dfrac{1}{16}\end{matrix}\right.$
    Vậy x = 7 hoặc x = 1/16
    c, (3x – 2)^2 – (2x + 3)^2 = 0
      <=> [(3x – 2) – (2x + 3)][(3x – 2) + (2x + 3)] = 0
      <=> (3x – 2 – 2x – 3)(3x – 2 + 2x + 3) = 0
      <=> (x – 5)(5x + 1) = 0
      <=> $\left[\begin{matrix} x – 5 = 0\\ 5x + 1 = 0\end{matrix}\right.$
      <=> $\left[\begin{matrix} x = 5\\ x = \dfrac{-1}{5}\end{matrix}\right.$
    Vậy x = 5 hoặc x = (-1)/5
    d, x^2 = 5x + 14
      <=> x^2 – 5x – 14 = 0
      <=> x^2 + 2x – 7x – 14 = 0
      <=> x(x + 2) – 7(x + 2) = 0
      <=> (x + 2)(x – 7) = 0
      <=> $\left[\begin{matrix} x + 2 = 0\\ x – 7 = 0\end{matrix}\right.$
      <=> $\left[\begin{matrix} x = -2\\ x = 7\end{matrix}\right.$
    Vậy x = -2 hoặc x = 7

    Trả lời

Viết một bình luận

Câu hỏi mới