tìm x: (x-2)^2+5x*(x-2)=0 c/m: (x-y)^3-(x-y)*(x^2+xy+y^2)+3xy*(x-y)=0

tìm x: (x-2)^2+5x*(x-2)=0
c/m:
(x-y)^3-(x-y)*(x^2+xy+y^2)+3xy*(x-y)=0

2 bình luận về “tìm x: (x-2)^2+5x*(x-2)=0 c/m: (x-y)^3-(x-y)*(x^2+xy+y^2)+3xy*(x-y)=0”

  1. 1)
    (x-2)^2+5x(x-2)=0
    <=>(x-2)(x-2+5x)=0
    <=>(x-2)(6x-2)=0
    <=>\(\left[ \begin{array}{l}x-2=0\\6x-2=0\end{array} \right.\) 
    <=>\(\left[ \begin{array}{l}x=2\\x=\dfrac{1}{3}\end{array} \right.\) 
    Vậy x in {2;1/3}
    2)
    (x-y)^3-(x-y)(x^2+xy+y^2)+3xy(x-y)=0
    <=>(x-y)^2=(x-y)(x^2+xy+y^2)-3xy(x-y)
    <=>x^3-3x^2y+3xy^3-y^3=x^3-y^3-3x^2y+3xy^2
    <=>x^3-3x^2y+3xy^3-y^3=x^3-3x^2y+3xy^2-y^3(đúng)
    Vậy (x-y)^3-(x-y)(x^2+xy+y^2)+3xy(x-y)=0

    Trả lời
  2. Tìm x:
    (x-2)^2+5x(x-2)=0
    <=> x^2-4x+4+5x^2-10x=0
    <=> 6x^2-14x+4=0
    <=> 6x^2-12x-2x+4=0
    <=> (6x^2-12x)-(2x-4)=0
    <=> 6x(x-2)-2(x-2)=0
    <=> (6x-2)(x-2)=0
    TH1:
    6x-2=0
    <=> 6x=2
    <=> x=1/3
    TH2:
    x-2=0
    <=> x=2
    Vậy x∈{1/3; 2}
    c/m:
    -> VT: (x-y)^3-(x-y)(x^2+xy+y^2)+3xy(x-y)
    =(x-y)[(x-y)(x-y)-(x^2+xy+y^2)+3xy]
    =(x-y)(x^2-xy-xy+y^2-x^2-xy-y^2+3xy)
    =(x-y)[(x^2-x^2)-(xy+xy+xy-3xy)+(y^2-y^2)]
    =(x-y)*0
    =0
    Vậy (x-y)^3-(x-y)(x^2+xy+y^2)+3xy(x-y)=0 (đpcm)
     

    Trả lời

Viết một bình luận

Câu hỏi mới