cos x – cos 2x + 2 = 0 <=> cos x – (2 cos^2 x – 1) + 2 = 0 <=> cos x – 2 cos^2 x + 1 + 2 = 0 <=> cos x – 2 cos^2 x + 3 = 0 <=> -2 cos^2 x + cos x + 3 = 0 <=> 2 cos^2 x – cos x – 3 = 0 <=> (cos x + 1) (2 cos x – 3) = 0 <=>\(\left[ \begin{array}{l} \text{cos} \ x + 1 = 0\\2 \ \text{cos} \ x – 3 = 0\end{array} \right.\) <=>\(\left[ \begin{array}{l}x = \pi + 2n \pi\\ \text{cos} \ x = \dfrac{3}{2} \ \rm (Loại)\end{array} \right.\) <=> x = \pi + 2n\pi (n \in Z) Trả lời
cosx-cos2x+2=0 <=>cosx-(2cos^2x-1)+2=0 <=>cosx-2cos^2x+1+2=0 <=>-2cos^2x+cosx+3=0 <=>\(\left[ \begin{array}{l}cosx=\dfrac{3}{2}(loại)\\cosx=-1\end{array} \right.\) =>cosx=-1 =>x=\pi+k2\pi(k∈Z) Trả lời
2 bình luận về “cosx-cos2x+2=0 Giúp em với ạ”