Cho ABC cân tại A, đường cao AH. Gọi D,E theo thứ tự là trung điểm của AB, AC @) tứ giác BDEC là hình gì? Vì sao?

Cho ABC cân tại A, đường cao AH. Gọi D,E theo thứ tự là trung điểm của AB, AC

@) tứ giác BDEC là hình gì? Vì sao?

B) gọi F là điểm đối xứng với E qua điểm H

Chứng minh BF//CE

1 bình luận về “Cho ABC cân tại A, đường cao AH. Gọi D,E theo thứ tự là trung điểm của AB, AC @) tứ giác BDEC là hình gì? Vì sao?</p”

  1. Giải đáp + Lời giải và giải thích chi tiết:
    a)
    Xét ΔABC có:
    D là trung điểm của AB
    E là trung điểm của AC
    ⇒ DE là đường trung bình của ΔABC
    ⇒ DE // BC ⇒ BDEC là hình thang
    Mà \hat{B} = \hat{C} ( ΔABC cân tại A )
    ⇒ BDEC là hình thang cân
    b)
    Ta có:
    AH là đường cao
    ΔABC cân tại A
    ⇒ AH là đường trung tuyến của ΔABC
    ⇒ H là trung điểm của BC ( 1 )
    Ta lại có:
    F đối xứng với E qua H
    ⇒ HE = HF ⇒ H là trung điểm của EF ( 2 )
    Xét tứ giác BECF, có:
    BC và EF là hai đường chéo
    Nên từ ( 1 ) và ( 2 ), ta suy ra: BECF là hình bình hành
    ⇒ BF // CE
    #tn

    cho-abc-can-tai-a-duong-cao-ah-goi-d-e-theo-thu-tu-la-trung-diem-cua-ab-ac-tu-giac-bdec-la-hinh

    Trả lời

Viết một bình luận

Câu hỏi mới