giup em voi moi nguoi, tim x, y a $\left \{ {8{x^{3} – 12x^{2} + 8x = y^{3} + y + 2} \atop {x^{2} + y^{2} = 2}} \right.$

giup em voi moi nguoi, tim x, y a
$\left \{ {8{x^{3} – 12x^{2} + 8x = y^{3} + y + 2} \atop {x^{2} + y^{2} = 2}} \right.$

2 bình luận về “giup em voi moi nguoi, tim x, y a $\left \{ {8{x^{3} – 12x^{2} + 8x = y^{3} + y + 2} \atop {x^{2} + y^{2} = 2}} \right.$”

  1. Giải đáp + Lời giải và giải thích chi tiết:
    $\begin{array}{l}
    \left\{ \begin{array}{l}
    8{x^3} – 12{x^2} + 8x = {y^3} + y + 2\left( 1 \right)\\
    {x^2} + {y^2} = 2\left( 2 \right)
    \end{array} \right.\\
    \left( 1 \right) \Leftrightarrow 8{x^3} – 12{x^2} + 6x – 1 + 2x = {y^3} + y + 1\\
     \Leftrightarrow {\left( {2x – 1} \right)^3} + 2x = {y^3} + y + 1\\
     \Leftrightarrow {\left( {2x – 1} \right)^3} – {y^3} + 2x – y – 1 = 0\\
     \Leftrightarrow \left( {2x – y – 1} \right)\left[ {{{\left( {2x – 1} \right)}^2} + \left( {2x – 1} \right)y + {y^2}} \right] + \left( {2x – y – 1} \right) = 0\\
     \Leftrightarrow \left( {2x – y – 1} \right)\left[ {\underbrace {{{\left( {2x – 1} \right)}^2} + \left( {2x – 1} \right)y + {y^2} + 1}_{ > 0}} \right] = 0\\
     \Leftrightarrow 2x – y – 1 = 0 \Leftrightarrow y = 2x – 1\\
    \left( 3 \right) \to \left( 2 \right) \Rightarrow {x^2} + {\left( {2x – 1} \right)^2} = 2\\
     \Leftrightarrow {x^2} + 4{x^2} – 4x + 1 = 2\\
     \Leftrightarrow 5{x^2} – 4x – 1 = 0\\
     \Leftrightarrow \left( {x – 1} \right)\left( {5x + 1} \right) = 0\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = 1\\
    x =  – \dfrac{1}{5}
    \end{array} \right. \Rightarrow \left[ \begin{array}{l}
    y = 1\\
    y =  – \dfrac{7}{5}
    \end{array} \right.\\
     \Rightarrow \left( {x;y} \right) = \left( {1;1} \right),\left( { – \dfrac{1}{5}; – \dfrac{7}{5}} \right)
    \end{array}$
     #Pô

    Trả lời

Viết một bình luận

Câu hỏi mới