Trang chủ » Hỏi đáp » Môn Toán Tìm hàm số (P y = a * x ^ 2 + bx + 1 biết (P) đi qua A(2, 1) B(4, 2) 03/07/2023 Tìm hàm số (P y = a * x ^ 2 + bx + 1 biết (P) đi qua A(2, 1) B(4, 2)
Giải đáp: $\left( P \right):y = \dfrac{1}{8}{x^2} – \dfrac{1}{4}x + 1$ Lời giải và giải thích chi tiết: $\begin{array}{l}\left( P \right):y = a.{x^2} + b.x + 1\\A\left( {2;1} \right);B\left( {4;2} \right) \in \left( P \right)\\ \Leftrightarrow \left\{ \begin{array}{l}1 = a{.2^2} + b.2 + 1\\2 = a{.4^2} + b.4 + 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}4a + 2b = 0\\16a + 4b = 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}8a + 4b = 0\\16a + 4b = 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}8a = 1\\4a + 2b = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}a = \dfrac{1}{8}\\2a + b = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}a = \dfrac{1}{8}\\b = – 2a = – 2.\dfrac{1}{8} = – \dfrac{1}{4}\end{array} \right.\\ \Leftrightarrow \left( P \right):y = \dfrac{1}{8}{x^2} – \dfrac{1}{4}x + 1\end{array}$ Trả lời
\left( P \right):y = a.{x^2} + b.x + 1\\
A\left( {2;1} \right);B\left( {4;2} \right) \in \left( P \right)\\
\Leftrightarrow \left\{ \begin{array}{l}
1 = a{.2^2} + b.2 + 1\\
2 = a{.4^2} + b.4 + 1
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
4a + 2b = 0\\
16a + 4b = 1
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
8a + 4b = 0\\
16a + 4b = 1
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
8a = 1\\
4a + 2b = 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
a = \dfrac{1}{8}\\
2a + b = 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
a = \dfrac{1}{8}\\
b = – 2a = – 2.\dfrac{1}{8} = – \dfrac{1}{4}
\end{array} \right.\\
\Leftrightarrow \left( P \right):y = \dfrac{1}{8}{x^2} – \dfrac{1}{4}x + 1
\end{array}$