Trang chủ » Hỏi đáp » Môn Toán lim (8n + 1)/(n ^ 2 – 2n + 1) lim ((n – 1) ^ 2 * (3n + 1))/(n ^ 3 + 3n – 1) 02/10/2023 lim (8n + 1)/(n ^ 2 – 2n + 1) lim ((n – 1) ^ 2 * (3n + 1))/(n ^ 3 + 3n – 1)
lim {8n + 1}/{n^2 – 2n + 1}$\\$ = lim {n^2. (8/{n} + 1/{n^2})}/{n^2. (1 – 2/{n} + 1/{n^2})}$\\$ = lim {8/{n} + 1/{n^2}}/{1 – 2/{n} + 1/{n^2}}$\\$ = 0/1 = 0$\\$ ____________________________________________________________________$\\$ lim {(n – 1)^2. (3n + 1)}/{n^3 + 3n – 1}$\\$ = lim {(n^2 – 2n + 1). (3n + 1)}/{n^3 + 3n – 1}$\\$ = lim {3n^3 – 5n^2 + n + 1}/{n^3 + 3n – 1}$\\$ = lim {n^3. (3 – 5/{n} + 1/{n^2} + 1/{n^3})}/{n^3. (1 + 3/{n^2} – 1/{n^3})}$\\$ = lim {3 – 5/{n} + 1/{n^2} + 1/{n^3}}/{1 + 3/{n^2} – 1/{n^3}}$\\$ = 3 $\\$ Trả lời
1 bình luận về “lim (8n + 1)/(n ^ 2 – 2n + 1) lim ((n – 1) ^ 2 * (3n + 1))/(n ^ 3 + 3n – 1)”