Cho đường tròn (O), đường kính AB. Gọi H là điểm cố định trên đoạn OB (H khác O, B). Dựng đường thẳng d qua H vuông góc với AB. Điểm C di động trên đường thẳng d sao cho C nằm ngoài (O), BC cắt (O) tại điểm thứ hai D, AD cắt d tại E. 1) Chứng minh tứ giác BDEH nội tiếp. 2) Chứng minh HE.HC = HA.HB. 3) Đường tròn ngoại tiếp tam giác CDE cắt AC tại điểm thứ hai là I. Chứng minh: I thuộc đường tròn (O) và DA là tia phân giác của HDI.
1 bình luận về “Cho đường tròn (O), đường kính AB. Gọi H là điểm cố định trên đoạn OB (H khác O, B). Dựng đường thẳng d qua H vuông góc với A”