Trang chủ » Hỏi đáp » Môn Toán b1: tính nhanh A=1+1/3+1/3^2+…..+1/3^n B=1/2+1/2^2+1/2^3+…+1/2^100 27/06/2023 b1: tính nhanh A=1+1/3+1/3^2+…..+1/3^n B=1/2+1/2^2+1/2^3+…+1/2^100
Ta có: A = 1 + 1/3 + 1/(3^2) + … + 1/(3^n) => 3A = 3 + 1 + 1/3 + … + 1/(3^(n- 1)) => 3A – A = ( 3 + 1 + 1/3 + … + 1/(3^(n- 1))) – (1 + 1/3 + 1/(3^2) + … + 1/(3^n)) => 2A = 3 – 1/(3^n) => A = (3 – 1/(3^n))/2 Vậy A = (3 – 1/(3^n))/2 ————————————- Ta có: B = 1/2 + 1/(2^2) + 1/(2^3) + … + 1/(2^(100)) => 2B = 1 + 1/2 + 1/(2^2) + … + 1/(2^(99)) => 2B – B = (1 + 1/2 + 1/(2^2) + … + 1/(2^(99))) – (1/2 + 1/(2^2) + 1/(2^3) + … + 1/(2^(100))) => B = 1 – 1/(2^(100)) Vậy B = 1 – 1/(2^(100)) $#duong612009$ Trả lời
Gửi e B = 1/2 + 1/(2^2) + 1/(2^3) + … + 1/(2^(100)) => 2B = 1 + 1/2 + 1/(2^2) + … + 1/(2^(99)) => 2B – B = (1 + 1/2 + 1/(2^2) + … + 1/(2^(99))) – (1/2 + 1/(2^2) + 1/(2^3) + … + 1/(2^(100))) => B = 1 – 1/(2^(100)) Trả lời
2 bình luận về “b1: tính nhanh A=1+1/3+1/3^2+…..+1/3^n B=1/2+1/2^2+1/2^3+…+1/2^100”