Trang chủ » Hỏi đáp » Môn Toán B1:Tính nhanh C=1/2-1/2^2+1/2^3-1/2^4+…+1/2^99-1/2^100 27/06/2023 B1:Tính nhanh C=1/2-1/2^2+1/2^3-1/2^4+…+1/2^99-1/2^100
Ta có: C = 1/2 – 1/(2^2) + 1/(2^3) – 1/(2^4) + … + 1/(2^(99)) – 1/(2^(100)) => 2C = 1 – 1/2 + 1/(2^2) – 1/(2^3) + … + 1/(2^(98)) – 1/(2^(99)) => 2C + C = (1 – 1/2 + 1/(2^2) – 1/(2^3) + … + 1/(2^(98)) – 1/(2^(99))) + (1/2 – 1/(2^2) + 1/(2^3) – 1/(2^4) + … + 1/(2^(99)) – 1/(2^(100))) => 3C = 1 – 1/(2^(100)) => C = (1 – 1/(2^(100)))/3 Vậy C = (1 – 1/(2^(100)))/3 $#duong612009$ Trả lời
C=1/2-1/2^2+1/2^3-1/2^4+…+1/2^99-1/2^100 <=> 2C = 1 – 1/2+1/2^2-1/2^3+1/2^4-…-1/2^99 <=> 2C + C = (1 – 1/2+1/2^2-1/2^3+1/2^4-…-1/2^99)+ (1/2-1/2^2+1/2^3-1/2^4+…+1/2^99-1/2^100) <=> 3C = (1 – 1/2+1/2^2-1/2^3+1/2^4-…-1/2^99 + 1/2-1/2^2+1/2^3-1/2^4+…+1/2^99-1/2^100) <=> 3C = 1 – 1/2^100 <=> C = (1 – 1/2^100)/3 $\text{@ngquynhchi331}$ Trả lời
2 bình luận về “B1:Tính nhanh C=1/2-1/2^2+1/2^3-1/2^4+…+1/2^99-1/2^100”