Bài 1: chứng minh rằng a) (x+1)(x²-x+1)=x³+1 b) (x+1)(x-x+x³-x²+x-1)=x-1 Bài 8: rút gọn các biểu thức sau: a) ( x-2)(x²+3

Bài 1: chứng minh rằng
a) (x+1)(x²-x+1)=x³+1
b) (x+1)(x-x+x³-x²+x-1)=x-1
Bài 8: rút gọn các biểu thức sau:
a) ( x-2)(x²+3) +(7-x)(x²+4)
b) 2x(x³+x²-1/2x-3/2)-(2x²-3)(x²+x+1)

1 bình luận về “Bài 1: chứng minh rằng a) (x+1)(x²-x+1)=x³+1 b) (x+1)(x-x+x³-x²+x-1)=x-1 Bài 8: rút gọn các biểu thức sau: a) ( x-2)(x²+3”

  1. Giải đáp: $\begin{array}{l}
    1)a){x^3} + 1\\
    b){x^6} – 1\\
    8)a)5{x^2} – 7x + 22\\
    b)3
    \end{array}$
     
    Lời giải và giải thích chi tiết:
    $\begin{array}{l}
    1)a)\left( {x + 1} \right)\left( {{x^2} – x + 1} \right)\\
     = {x^3} – {x^2} + x + {x^2} – x + 1\\
     = {x^3} + \left( { – {x^2} + {x^2}} \right) + \left( {x – x} \right) + 1\\
     = {x^3} + 1\\
    b)\left( {x + 1} \right)\left( {{x^5} – {x^4} + {x^3} – {x^2} + x – 1} \right)\\
     = {x^6} – {x^5} + {x^4} – {x^3} + {x^2} – x\\
     + {x^5} – {x^4} + {x^3} – {x^2} + x – 1\\
     = {x^6} – 1\\
    8)a)\\
    \left( {x – 2} \right)\left( {{x^2} + 3} \right) + \left( {7 – x} \right)\left( {{x^2} + 4} \right)\\
     = {x^3} – 3x – 2{x^2} – 6 + 7{x^2} + 28 – {x^3} – 4x\\
     = \left( {{x^3} – {x^3}} \right) + \left( { – 2{x^2} + 7{x^2}} \right) + \left( { – 3x – 4x} \right)\\
     – 6 + 28\\
     = 5{x^2} – 7x + 22\\
    b)\\
    2x\left( {{x^3} – {x^2} + \dfrac{1}{2}x – \dfrac{3}{2}} \right) – \left( {2{x^2} – 3} \right)\left( {{x^2} + x + 1} \right)\\
     = 2{x^4} + 2{x^3} – {x^2} – 3x\\
     – \left( {2{x^4} + 2{x^3} + 2{x^2} – 3{x^2} – 3x – 3} \right)\\
     = 2{x^4} + 2{x^3} – {x^2} – 3x – \left( {2{x^4} + 2{x^3} – {x^2} – 3x – 3} \right)\\
     = 3
    \end{array}$

    Trả lời

Viết một bình luận

Câu hỏi mới