C=1+3+3^2+…+3^23 a) Rút gọn b) C/m C chia hết cho 13 c) C/m C chia hết cho 40 cứuuuuuuuuuuuuuuuuuuu

C=1+3+3^2+…+3^23
a) Rút gọn
b) C/m C chia hết cho 13
c) C/m C chia hết cho 40
cứuuuuuuuuuuuuuuuuuuu

2 bình luận về “C=1+3+3^2+…+3^23 a) Rút gọn b) C/m C chia hết cho 13 c) C/m C chia hết cho 40 cứuuuuuuuuuuuuuuuuuuu”

  1. a)C=1+3+3^2+…+3^23
    =>3C=3+3^2+3^3+…+3^24
    =>3C-C=(3+3^2+3^3+…+3^24)-(1+3+3^2+…+3^23)
    =>3C-C=3+3^2+3^3+…+3^24-1+3+3^2-…-3^23
     =>2C=3^24-1
    =>C=(3^24-1)/2
    b)C=1+3+3^2+…+3^23
    =(1+3+3^2)+…+(3^21+3^22+3^23)
    =(1+3+3^2)+…+3^21(1+3+3^2)
    =(1+3+3^2)(1+…+3^21)
    =13.(1+…+3^21)vdots13
    =>Cvdots13(đpcm)
    c)C=1+3+3^2+…+3^23
    =(1+3+3^2+3^3)+…+(3^20+3^21+3^22+3^23)
    =(1+3+3^2+3^3)+…+3^20(1+3+3^2+3^3)
    =(1+3+3^2+3^3)(1+…+3^20)
    =40.(1+…+3^20)vdots40
    =>Cvdots40(đpcm)

    Trả lời
  2. a, Ta có: C = 1 + 3 + 3^2 + … + 3^(23)
    => 3C = 3 + 3^2  + 3^3 + … + 3^(24)
    => 3C – C = (3 + 3^2 + 3^3 + …+ 3^(24)) – (1 + 3 + 3^2 + … + 3^(23))
    => 2C  = 3^(24) – 1
    => C = (3^(24) – 1)/2
    Vậy C = (3^(24) – 1)/2
    b, Ta có: C = 1 + 3 + 3^2 + … + 3^(23)
    => C = (1 + 3 + 3^2) + …. + (3^(21) + 3^(22) + 3^(23))
    => C = (1 + 3 + 3^2) + … + 3^(21) (1 + 3 + 3^2)
    => C = 13 + …. + 3^(21) . 13
    => C = 13(1 + … + 3^(21)) \vdots 13
    => C \vdots 13  (đpcm)
    c, Ta có: C = 1 + 3 + 3^2 + … + 3^(23)
    => C = (1 + 3 + 3^2 + 3^3) +( 3^4 +3^5 + 3^6 + 3^7) + … + ((3^(16) + 3^(17) + 3^(18) + 3^(19)) + (3^(20) + 3^(21) + 3^(22) + 3^(23)))
    => C = (1 + 3 + 3^2 + 3^3) + 3^4 (1 + 3 + 3^2 + 3^3) + … + 3^(16) (1 + 3 + 3^2 + 3^3) + 3^(20) (1 + 3 + 3^2 + 3^3)
    => C = 40 + 3^4 . 40… + 3^(16) . 40 + 3^(20) . 40
    => C = 40 (1 + 3^4 +.. + 3^(16) + 3^(20)) \vdots 40
    => C \vdots 40  (đpcm)
    $#duong612009$

    Trả lời

Viết một bình luận

Câu hỏi mới