Trang chủ » Hỏi đáp » Môn Toán Cho A= 1/2+3/2+(3/2)²+(3/2)³+…(3/2)²²² và B=2×(3/2)²²³. Tính B-A 01/09/2023 Cho A= 1/2+3/2+(3/2)²+(3/2)³+…(3/2)²²² và B=2×(3/2)²²³. Tính B-A
A = \dfrac{1}{2}+\dfrac{3}{2}+\dfrac{3}{2^2}+\dfrac{3}{2^3}+…..+\dfrac{3}{2^{2021}}+\dfrac{3}{2^{2022}}21+23+223+233+…..+220213+220223 2\times2×A = 1 + 3+ \dfrac{3}{2}23 +\dfrac{3}{2^2}223 + \dfrac{3}{2^3}233+………..+\dfrac{3}{2^{2021}}220213 2 \times× A – A = 4 – \dfrac{1}{2}21 – \dfrac{3}{2^{2022}}220223 A = \dfrac{7}{2}27 – \dfrac{3}{2^{2022}}220223 B = 2 \times\dfrac{3}{2^{2023}}×220233 A – B = \dfrac{7}{2}-\dfrac{3}{2^{2022}}27−220223 – 2 \times× \dfrac{3}{2^{2023}}220233 A – B = \dfrac{7}{2}27 – \dfrac{3}{2^{2022}}220223 – \dfrac{3}{2^{2022}}220223 A – B = \dfrac{7}{2}27 – \dfrac{6}{2^{2022}}220226 A – B = \dfrac{7}{2}27 – \dfrac{3}{2^{2021}}220213 ReplyForward Trả lời
1 bình luận về “Cho A= 1/2+3/2+(3/2)²+(3/2)³+…(3/2)²²² và B=2×(3/2)²²³. Tính B-A”