A=1+3+3mu2+3mu3+…+3mu100 3A = 3 + 3² + 3³ + … + 3^101 3A – A = ( 3 + 3² + 3³ + … + 3^101 ) – ( 1+3+3mu2+3mu3+…+3mu100 ) 2A = 3^101 – 1 A = ( 3^101 – 1 ) : 2 A = 3^101 – 1 /2 @thaotrang2910 Hoidap247 Trả lời
Đặt :A=3+3^2+3^3+3^4+…3^99+3^100 =>3A=3.(3^2+3^3+3^4…+3^99+3^100) =>3A=3^2+3^3+3^4+…+3^99+3^100+3^101 =>3A-A=(3^2+3^3+3^4…+3^99+3^100+3^101)-(3+3^2+3^3+3^4…+3^99+3^100) =>2A=1+3^101-3 =>A=(3^101-3)/2 #vat Trả lời
2 bình luận về “Cho A=1+3+3mu2+3mu3+…+3mu100”