Trang chủ » Hỏi đáp » Môn Toán S = 1 + 2 + 2^2 + 2^3 + 2^4 + … + 2^100 chia hết cho 7 18/11/2024 S = 1 + 2 + 2^2 + 2^3 + 2^4 + … + 2^100 chia hết cho 7
S = 1 + 2 + 2^2 + 2^3 + 2^4 +2^5+… + 2^98+2^99 +2^100 =(1 + 2 + 2^2) + (2^3 + 2^4 +2^5)+… + (2^98+2^99 +2^100) =(1+2+2^2)+2^3(1+2+2^2)+…+2^98(1+2+2^2) =(1+2+2^2)+(1+2^3+…+2^98) =7(1+2^3+…+2^98)vdots7 Trả lời
S = 1 + 2 + 2^2 + 2^3 + 2^4 + … + 2^100 chia hết cho 7 S= (1+2+2^2) + (2^2+2^3+2^4)+…+(2^98+2^99+2^100) S= 7+2^2(1+2+2^2)+…+2^98(1+2+2^2) S= 7+2^2.7+…+2^98.7 S=7(1+2^2+…+2^98) Vậy S chia hết cho 7 Trả lời
2 bình luận về “S = 1 + 2 + 2^2 + 2^3 + 2^4 + … + 2^100 chia hết cho 7”