Trang chủ » Hỏi đáp » Môn Toán S = 3 + 2^2 – 2^3+ 2^4 – … – 2^99 + 2^100 17/02/2024 S = 3 + 2^2 – 2^3+ 2^4 – … – 2^99 + 2^100
Giải đáp + Lời giải và giải thích chi tiết: S = 3 + 2^2 – 2^3 + 2^4 – … – 2^99 + 2^100 2S = 6 + 2^3 – 2^4 + 2^5 – … – 2^100 + 2^101 2S + S = (6 + 2^3 – 2^4 + 2^5 – … – 2^100 + 2^101) + ( 3 + 2^2 – 2^3 + 2^4 – … – 2^99 + 2^100) 3S = 6 + 2^3 – 2^4 + 2^5 – … – 2^100 + 2^101 + 3 + 2^2 – 2^3 + 2^4 – … – 2^99 + 2^100 3S = 9 + 2^2 + 2^101 S = (9 + 2^2 + 2^101)/3. Trả lời
Ta có : S = 3 + 2^2 – 2^3 + 2^4 – … – 2^99 + 2^100 2S = 6 + 2^3 – 2^4 + 2^5 – … – 2^100 + 2^101 2S + S = (6 + 2^3 – 2^4 + 2^5 – … – 2^100 + 2^101) + (3 + 2^2 – 2^3 + 2^4 – … – 2^99 + 2^100) S(2+1) = 6 + 2^3 – 2^4 + 2^5 – … – 2^100 + 2^101 + 3 + 2^2 – 2^3 + 2^4 – … – 2^99 + 2^100 S.3 = 2^2 + 2^101 + 9 S = (2^2 + 2^101 + 9) : 3 Trả lời
2 bình luận về “S = 3 + 2^2 – 2^3+ 2^4 – … – 2^99 + 2^100”