Trang chủ » Hỏi đáp » Môn Toán tích a = (2 x 2^2 x 2^3 x … x 2^10) x (5^2 x 5^6 x 5^14) có tân cùng bao nhiêu chữ số 0 24/04/2023 tích a = (2 x 2^2 x 2^3 x … x 2^10) x (5^2 x 5^6 x 5^14) có tân cùng bao nhiêu chữ số 0
Giải thích các bước giải: A=(2 x 2² x 2³ x … x 2 10 ) x (5² x 5 6 x 5 14 ) A= 2 1 + 2 + 3 + 4 + 5 + 6 + 6 + 7 + 8 + 9 + 10 x 5 2 + 6 + 14 A= 2 55 x 5 22 tích A có tận cùng 22 chữ số 0 Trả lời
Giải đáp: Lời giải và giải thích chi tiết: A=(2 x 2² x 2³ x … x $2^{10}$ ) x (5² x $5^{6}$ x $5^{14}$ ) ⇒A=$2^{1+2+3+4+5+6+6+7+8+9+10}$ x $5^{2+6+14}$ ⇒A=$2^{55}$ x $5^{22}$ ⇒tích A có tận cùng 22 chữ số 0 Trả lời
2 bình luận về “tích a = (2 x 2^2 x 2^3 x … x 2^10) x (5^2 x 5^6 x 5^14) có tân cùng bao nhiêu chữ số 0”