1/3 + 1/3^2 + 1/3^3 +……+ 1/3^2017+1/3^2018 so sánh với 1/2

1/3 + 1/3^2 + 1/3^3 +……+ 1/3^2017+1/3^2018 so sánh với 1/2

1 bình luận về “1/3 + 1/3^2 + 1/3^3 +……+ 1/3^2017+1/3^2018 so sánh với 1/2”

  1. Đặt A=1/3 + 1/3^2 + 1/3^3 +……+ 1/3^2017+1/3^2018
    => 3A=1+1/3 + 1/3^2 + 1/3^3 +……+ 1/3^2017
    => 3A-A=1+1/3 + 1/3^2 + 1/3^3 +……+ 1/3^2017-(1/3 + 1/3^2 + 1/3^3 +……+ 1/3^2017+1/3^2018)
    => 2A=1-1/3^2018
    => A=1/2-(1/3^2018 : 2) < 1/2

    Trả lời

Viết một bình luận

Câu hỏi mới