Trang chủ » Hỏi đáp » Môn Toán x – 2023 ^ (x + 1) – x – 2023 ^ (x + 2023) = 0 24/10/2023 x – 2023 ^ (x + 1) – x – 2023 ^ (x + 2023) = 0
Giải đáp: (x-2023)^{x+1}-(x-2023)^{x+2023}=0 =>(x-2023)^{x}.(x-2023)^{1}-(x-2023)^{x}.(x-2023)^{2023}=0 =>(x-2023)^{x}.(x-2023)^{1}.[1-(x-2023)^{2022}]=0 =>(x-2023)^{x+1}.[1-(x-2023)^{2022}]=0 Ta xét 2TH: +)TH1: (x-2023)^{x+1}=0 =>x-2023=0 =>x=2023 +)TH2: 1-(x-2023)^{2022}=0 =>-(x-2023)^{2022}=-1 =>(x-2023)^{2022}=1 =>(x-2023)^{2022}=1^{2022}=(-1)^{2022} =>x-2023=1 hoặc x-2023=-1 =>x=2024 hoặc x=2022 Vậy x\in{2022;2023;2024} Trả lời
(x – 2023)^(x + 1) – (x – 2023)^(x + 2023) = 0 <=> (x – 2023)^(x + 1) [1 – (x – 2023)^(2022)] = 0 <=> (x – 2023)^(x + 1) = 0 hoặc 1 – (x – 2023)^(2022) = 0 <=> x – 2023 = 0 hoặc (x – 2023)^(2022) = 1 <=> x= 2023 hoặc x – 2023 = 1 hoặc x – 2023 = -1 <=> x= 2023 hoặc x = 2024 hoặc x= 2022 Vậy x \in {2022,2023,2024} $#duong612009$ Trả lời
2 bình luận về “x – 2023 ^ (x + 1) – x – 2023 ^ (x + 2023) = 0”