A = 9 + 99 + 999 + … + 999…9 ( 10 chữ số 9 )

A = 9 + 99 + 999 + … + 999…9 ( 10 chữ số 9 )

2 bình luận về “A = 9 + 99 + 999 + … + 999…9 ( 10 chữ số 9 )”

  1. Giải đáp:
     
    Lời giải và giải thích chi tiết:
    Q = 9 + 99 + 999 + … + 999….9
    Q= (10 – 1) +(100-1)+(1000-1)+…+(10000…..0-1) ( số 1000…..0 có 100 chữ số 1)
    Q=(10+100+1000+….+1000….0)-(1+1+1+1+….+1)
    Q=111111……0-100(số 11111….10 có 99 chữ số 1)
    Q=1111….1090( có 96 chữ số 1)

    Trả lời
  2. Ta có: A = 9 + 99 + 999 + … + 999…9
    => A = (10 – 1) + (10^2 – 1) + (10^3 – 1) + …. + (10^(10) – 1)
    => A = (10 + 10^2 + 10^3 + … + 10^(10)) – (1 + 1 + 1 + … + 1)
    => A = (10 + 10^2 + 10^3 + … + 10^(10)) – 10
    Đặt B = (10 + 10^2 + 10^3 + … + 10^(10))
    => 10B = (10^2 + 10^3 + … + 10^(10) + 10^(11))
    => 10B – B = (10^2 + 10^3 + … + 10^(10) + 10^(11)) – (10 + 10^2 + 10^3 + … + 10^(10))
    => 9B = 10^(11) – 1
    => B = (10^(11) – 1)/9
    => A = (10^(11) – 1)/9 – 10
    => A = (999 … 999)/9 – 10      (11 chữ số 9)
    => A = 111….1 – 10   (11 chữ số 1)
    => A = 111….101
    Vậy A = 1111….101
     

    Trả lời

Viết một bình luận

Câu hỏi mới