Bài 1. Cho tam giác ABC vuông tại A, kẻ ???????? ????????tại H. Trên tia đối của tia HA lấy điểm D sao cho ???????? = ????????. a) Chứng mi

Bài 1. Cho tam giác ABC vuông tại A, kẻ ???????? ????????tại H. Trên tia đối của tia HA lấy điểm D sao cho ???????? = ????????. a) Chứng minh rằng: ???????????????? = ????????????????
b) Chứng minh rằng: ???????????????? = ????????????????, từ đó suy ra ???????? ????????
c) Cho ???????????? ̂ = 60 ???? . Tính số đo góc???????????? ̂.

2 bình luận về “Bài 1. Cho tam giác ABC vuông tại A, kẻ ???????? ????????tại H. Trên tia đối của tia HA lấy điểm D sao cho ???????? = ????????. a) Chứng mi”

  1. Lời giải và giải thích chi tiết:
    a.Xét ΔAHB,ΔDHB có:
    Chung HB
    AHB^=DHB^(=90o)
    HA=HD
    ΔAHB=ΔDHB(c.g.c)
    b.Từ câu a BA=BD,ABH^=DBH^ABC^=DBC^
    Xét ΔABC,ΔDBC có:
    Chung BC
    ABC^=DBC^
    BA=BD
    ΔABC=ΔDBC(c.g.c)
    BDC^=BAC^=90o
    BDDC
    c.Từ câu b BCD^=ACB^CB là phân giác ACD^
    ACD^=2ACB^=2(90oABC^)=60o

    bai-1-cho-tam-giac-abc-vuong-tai-a-ke-tai-h-tren-tia-doi-cua-tia-ha-lay-diem-d-sao-cho-a-chung-m

    Trả lời
  2. Giải đáp:
     
    Lời giải và giải thích chi tiết:
     a) Xét ΔAHB và ΔDHB
    Có {(HD=HA(GT)),(\hat{AHB}=\hat{DHB=90^o}),(HB chung):}
    ⇒ΔAHB =ΔDHB(c.g.c)
    b) Vì ΔAHB =ΔDHB(câu a)
    [AB=BD(cpcnhtươngng)ABC^=DBC^(cpgóctươngng)
    Xét ΔABC và ΔDBC
    {AB=BD(cmt)widehatABC=DBC^BCchung
    ⇒ ΔABC = ΔDBC(c.g.c)
    BAC^ = BDC^ (cặp góc tương ứng)
    BAC^ = 90^o
    BDC^ = 90^o
    ⇒BD CD
    c) Ta có: widehatABC = DBC^(cmt)
    widehatABC =60^o
    widehatDBC =60^o
    Lại có: widehatDBC + widehatBDC +widehatDCB =180^o(tổng 3 góc trong Δ)
    widehatDCB= 180^o – 90^o – 60^o = 30^o
    Mà \hat{ACB} = \hat{DCB}(vì ΔABC = ΔDBC)
    ⇒\hat{ACB} = 30^o
    ⇒ \hat{ACD} = 30^o x 2=60^o
    Chúc bạn học tốt

    Trả lời

Viết một bình luận

Câu hỏi mới