Trang chủ » Hỏi đáp » Môn Toán 16x^2 -8x+1=4(x+3)(4x-1) 9x^2 +6x+1 = (3x+1)(x-2) 10/12/2023 16x^2 -8x+1=4(x+3)(4x-1) 9x^2 +6x+1 = (3x+1)(x-2)
16x^2 -8x+1=4(x+3)(4x-1) ⇔ 16x^2 -8x +1= 4(4x^2 -x+12x-3) ⇔ 16x^2 -8x +1= 4(4x^2 +11x-3) ⇔ 16x^2 -8x +1= 16x^2 + 44x – 12 ⇔ -52x=-13 ⇔ x= 1/4 Vậy x= 1/4 $\\$ 9x^2 +6x+1= (3x+1)(x-2) ⇔ 9x^2 + 6x+1= 3x^2 -6x+x-2 ⇔ 9x^2 +6x +1= 3x^2 -5x -2 ⇔ 6x^2 +11x +3=0 ⇔ 6x^2 + 2x + 9x +3=0 ⇔ 2x(3x+1) + 3(3x+1)=0 ⇔ (3x+1)(2x+3)=0 ⇔ \(\left[ \begin{array}{l}3x+1=0\\2x+3=0\end{array} \right.\) ⇔ $\left[\begin{matrix} x=\dfrac{-1}{3}\\ x=\dfrac{-3}{2}\end{matrix}\right.$ Vậy S={-1/3 ; -3/2} Trả lời
* 16x^2-8x+1=4(x+3)(4x-1) <=>16x^2-8x+1=16x^2+44x-12 <=>-8x-44x=-12-1 <=>-52x=-13 <=>x=1/4 Vậy x=1/4 * 9x^2+6x+1=(3x+1)(x-2) <=>9x^2+6x+1=3x^2-5x-2 <=>9x^2-3x^2+6x+5x+1+2=0 <=>6x^2+11x+3=0 <=>(3+2x)(1+3x)=0 ⇔ \(\left[ \begin{array}{l}3x+1=0\\2x+3=0\end{array} \right.\) ⇔ $\left[\begin{matrix} x=\dfrac{-1}{3}\\ x=\dfrac{-3}{2}\end{matrix}\right.$ Vậy x∈{-3/2;-1/3} Trả lời
2 bình luận về “16x^2 -8x+1=4(x+3)(4x-1) 9x^2 +6x+1 = (3x+1)(x-2)”