`(2x^2-3)^2-16(x+3)^2=0`
Cú tui đi tròi
-
Giải đáp:(2x^{2}-3)^{2}-16.(x+3)^{2}=0<=>(2x^{2}-3)^{2}-4^{2}.(x+3)^{2}=0<=>(2x^{2}-3)^{2}-[4.(x+3)]^{2}=0<=>(2x^{2}-3)^{2}-(4x+12)^{2}=0<=>(2x^{2}-3-4x-12).(2x^{2}-3+4x+12)=0<=>(2x^{2}-4x-15).(2x^{2}+4x+9)=0<=>[2.(x^{2}-2x-15/2)].[2.(x^{2}+2x+9/2)]=0<=>(x^{2}-2.x.1+1^{2}-17/2).(x^{2}+2.x.1+1^{2}+7/2)=0<=>[(x-1)^{2}-17/2].[(x+1)^{2}+7/2]=0Ta có:(x+1)^{2}\ge0AAx\inRR->(x+1)^{2}+7/2>0AAx\inRR=>(x-1)^{2}-17/2=0<=>(x-1)^{2}=17/2<=>(x-1)^{2}=(\pm\sqrt{\frac{17}{2}})^{2}<=>x-1=\sqrt{\frac{17}{2}} hoặc x-1=-\sqrt{\frac{17}{2}}<=>x-1=\frac{\sqrt{34}}{2} hoặc x-1=-\frac{\sqrt{34}}{2}<=>x=\frac{\sqrt{34}}{2}+1 hoặc x=\frac{-\sqrt{34}}{2}+1<=>x=\frac{2+\sqrt{34}}{2} hoặc x=\frac{2-\sqrt{34}}{2}Vậy S={\frac{2\pm\sqrt{34}}{2}}
-
Giải đáp + Lời giải và giải thích chi tiết:(2x^2 – 3)^2 – 16(x + 3)^2 = 0<=> (2x^2 – 3 – 4x – 12)(2x^2 – 3 + 4x + 12) = 0<=> (2x^2 – 4x – 15)(2x^2 + 4x + 9) = 0TH1:2x^2 – 4x – 15 = 0<=> 2(x^2 – 2x – 15/2) = 0<=> x^2 – 2x + 1 -17/2 = 0<=> (x – 1)^2 = 17/2<=> [(x – 1 = sqrt(17/2)),(x – 1 = -sqrt(17/2)):}<=> [(x = (2 + sqrt34)/2),(x = (2 – sqrt34)/2):}TH2:2x^2 + 4x + 9 = 0<=> 2(x^2 + 2x + 9/2) = 0<=> x^2 + 2x + 1 + 7/2 = 0<=> (x + 1)^2 + 7/2 = 0Mà (x + 1)^2 >= 0 AA x=> (x + 1)^2 + 7/2 >= 7/2 > 0 AA xVậy S = {(2 + sqrt34)/2; (2 – sqrt34)/2}.