( x + 3 )^2 + ( x – 1 ) ( 2x + 5 ) x^2 + 2x – y^2 + 1 tim x ( x – 2 ) ( x + 1 ) – x^2 + 2x = 13 x^2 + 2x =0

( x + 3 )^2 + ( x – 1 ) ( 2x + 5 )
x^2 + 2x – y^2 + 1
tim x
( x – 2 ) ( x + 1 ) – x^2 + 2x = 13
x^2 + 2x =0

1 bình luận về “( x + 3 )^2 + ( x – 1 ) ( 2x + 5 ) x^2 + 2x – y^2 + 1 tim x ( x – 2 ) ( x + 1 ) – x^2 + 2x = 13 x^2 + 2x =0”

  1. (x + 3)^2 + (x – 1)(2x + 5)
    = x^2 + 6x + 9 + 2x^2 + 5x – 2x – 5
    = 3x^2 + 9x + 3
    —————
    x^2 + 2x – y^2 + 1
    = (x + 1)^2 – y^2
    = (x – y + 1)(x + y + 1)
    ———————-
    (x – 2)(x + 1) – x^2 + 2x = 13
    => x^2 + x – 2x – 2 – x^2 + 2x = 13
    => x – 2 = 13
    => x = 13 + 2
    => x  = 15
    Vậy x = 15
    —————–
    x^2 + 2x = 0
    => x(x + 2)  = 0
    => x = 0 hoặc x + 2 = 0
    => x = 0 hoặc x = -2
    Vậy x \in {-2,0}

    Trả lời

Viết một bình luận

Câu hỏi mới