3/(x^2+5x+6) + 3/(x^2+7x+12) + 3/(x^2+9x+20) + 3/(x^2+11x+30)=1/5

3/(x^2+5x+6) + 3/(x^2+7x+12) + 3/(x^2+9x+20) + 3/(x^2+11x+30)=1/5

2 bình luận về “3/(x^2+5x+6) + 3/(x^2+7x+12) + 3/(x^2+9x+20) + 3/(x^2+11x+30)=1/5”

  1. Lời giải và giải thích chi tiết:
    3/(x^2+5x+6)+3/(x^2+7x+12)+3/(x^2+9x+20)+3/(x^2+11x+30)=1/5(x\ne-2;-3;-4;-5;-6)
    <=>3/((x+2)(x+3))+3/((x+3)(x+4))+3/((x+4)(x+5))+3/((x+5)(x+6))=1/5
    <=>3.(1/(x+2)-1/(x+3)+1/(x+3)-1/(x+4)+1/(x+4)-1/(x+5)+1/(x+5)-1/(x+6))=1/5
    <=>3.(1/(x+2)-1/(x+6))=1/5
    <=>1/(x+2)-1/(x+6)=1/15
    <=>(x+6-x-2)/((x+2)(x+6))=1/15
    <=>(4/((x+2)(x+6))=4/(60)
    =>(x+2)(x+6)-60=0
    <=>x^2+8x+12-60=0
    <=>x^2+8x-48=0
    <=>[(x=4),(x=-12):}
    Vây S={4;-12}

    Trả lời
  2. 3/(x^2 + 5x+6) + 3/(x^2 + 7x+12) + 3/(x^2+9x+20) + 3/(x^2+11x+30) = 1/5
    <=> 3/[(x+2)(x+3)] + 3/[(x+3)(x+4)] + 3/[(x+4)(x+5)] + 3/[(x+5)(x+6)] = 1/5 ĐKXĐ:x≠-2;-3;-4;-5;-6
    <=> 3/(x+2) – 3/(x+3) + 3/(x+3) – 3/(x+4) + 3/(x+4) – 3/(x+5) + 3/(x+5) – 3/(x+6) = 1/5
    <=> 3/(x+2) – 3/(x+6) = 1/5 MTC: 5(x+2)(x+6)
    <=> 15(x+6) – 15(x+2) = (x+2)(x+6)
    <=> 15x + 90 – 15x – 30  =x^2 + 8x + 12
    <=> 0 = x^2 + 8x – 48
    <=> x^2 – 4x + 12x – 48 =0
    <=> x(x-4) + 12(x-4) =0
    <=>(x-4)(x+12)=0
    <=>\(\left[ \begin{array}{l}x-4=0\\x+12=0\end{array} \right.\) <=>\(\left[ \begin{array}{l}x=4\\x=-12\end{array} \right.\) ™
    Vậy S={4;-12}
    $\color{lightblue}{eriet}$

    Trả lời

Viết một bình luận

Câu hỏi mới