Cho `(a – b)^2 + ( b-c)^2 + ( c-a)^2 = ( a + b – 2c)^2 + ( b + c – 2a)^2 + ( c +a – 2b )^2` CMR : ` a= b = c`

Cho `(a – b)^2 + ( b-c)^2 + ( c-a)^2 = ( a + b – 2c)^2 + ( b + c – 2a)^2 + ( c +a – 2b )^2`
CMR : ` a= b = c`

1 bình luận về “Cho `(a – b)^2 + ( b-c)^2 + ( c-a)^2 = ( a + b – 2c)^2 + ( b + c – 2a)^2 + ( c +a – 2b )^2` CMR : ` a= b = c`”

  1. → Ta có :
    ( a – b )² + ( b – c )² + ( c – a )² = ( a + b – 2c )² + ( b + c – 2a )² + ( c + a – 2b )²
    ⇔ ( a – b )² – ( a + b – 2c )² + ( b – c )² – ( b + c – 2a )² + ( c – a )² – ( c + a  – 2b )² = 0
    ⇔ ( a – b + a + b – 2c )( a – b – a – b + 2c ) + ( b – c + b + c – 2a )( b – c – b – c + 2a ) +
    ( c – a + c + a – 2b )( c – a – c – a + 2b ) =0
    ⇔ ( 2a – 2c )( 2c – 2b ) + ( 2b – 2a )( 2a – 2c ) + ( 2c – 2b )( 2b – 2c ) =0
    ⇔  4( a – c )( c – b ) + 4( b – a )( a – c ) + 4( c – b )( b – c ) =0
    ⇔ ( a – c )( c – b ) + ( b – a )( a – c ) + ( c – b )( b – c ) =0
    ⇔  ( a – c )( c – b + b – a ) – ( b – c )( b – c ) = 0
    ⇔ ( a – c )( c – a ) – ( b – c )² = 0
    ⇔ – ( a – c )( a – c ) – ( b – c )² =0
    ⇔ – ( a – c )( a – c ) – ( b – c )² =0
    ⇔ ( a – c )² + ( b – c )² = 0
    mà  ( a – c )²  ≥  0   và   ( b – c )²  ≥  0         ;(  a, b, c )
    ⇒ ( a – c )² + ( b – c )² ≥  0               ;(  a, b, c )
    → Dấu  ” = ” xảy ra khi :
    {ac=0bc=0
    ⇔ {a=cb=c
    ⇒ a = b = c
    → Vậy a = b = c            ( ĐPCM )
    5 sao nha

    Trả lời

Viết một bình luận

Câu hỏi mới