Trang chủ » Hỏi đáp » Môn Toán Cho `(a – b)^2 + ( b-c)^2 + ( c-a)^2 = ( a + b – 2c)^2 + ( b + c – 2a)^2 + ( c +a – 2b )^2` CMR : ` a= b = c` 08/09/2024 Cho `(a – b)^2 + ( b-c)^2 + ( c-a)^2 = ( a + b – 2c)^2 + ( b + c – 2a)^2 + ( c +a – 2b )^2` CMR : ` a= b = c`
ó→ Ta có : ²²²²²²( a – b )² + ( b – c )² + ( c – a )² = ( a + b – 2c )² + ( b + c – 2a )² + ( c + a – 2b )² ²²²²²²⇔ ( a – b )² – ( a + b – 2c )² + ( b – c )² – ( b + c – 2a )² + ( c – a )² – ( c + a – 2b )² = 0 ⇔ ( a – b + a + b – 2c )( a – b – a – b + 2c ) + ( b – c + b + c – 2a )( b – c – b – c + 2a ) + ( c – a + c + a – 2b )( c – a – c – a + 2b ) =0 ⇔ ( 2a – 2c )( 2c – 2b ) + ( 2b – 2a )( 2a – 2c ) + ( 2c – 2b )( 2b – 2c ) =0 ⇔ 4( a – c )( c – b ) + 4( b – a )( a – c ) + 4( c – b )( b – c ) =0 ⇔ ( a – c )( c – b ) + ( b – a )( a – c ) + ( c – b )( b – c ) =0 ⇔ ( a – c )( c – b + b – a ) – ( b – c )( b – c ) = 0 ²⇔ ( a – c )( c – a ) – ( b – c )² = 0 ²⇔ – ( a – c )( a – c ) – ( b – c )² =0 ²⇔ – ( a – c )( a – c ) – ( b – c )² =0 ²²⇔ ( a – c )² + ( b – c )² = 0 à²à²mà ( a – c )² ≥ 0 và ( b – c )² ≥ 0 ;( ∀ a, b, c ) ²²⇒ ( a – c )² + ( b – c )² ≥ 0 ;( ∀ a, b, c ) ấả→ Dấu ” = ” xảy ra khi : {a−c=0b−c=0 ⇔ {a=cb=c ⇒ a = b = c ậĐ→ Vậy a = b = c ( ĐPCM ) 5 sao nha Trả lời
1 bình luận về “Cho `(a – b)^2 + ( b-c)^2 + ( c-a)^2 = ( a + b – 2c)^2 + ( b + c – 2a)^2 + ( c +a – 2b )^2` CMR : ` a= b = c`”