Trang chủ » Hỏi đáp » Môn Toán Cho `P=(x^2 +x)/(x^2 -2x+1):((x+1)/x +1/(x-1)+(2-x^2)/(x^2-x))` Rút gọn `P` 30/04/2024 Cho `P=(x^2 +x)/(x^2 -2x+1):((x+1)/x +1/(x-1)+(2-x^2)/(x^2-x))` Rút gọn `P`
P=(x^2+x)/(x^2-2x+1):((x+1)/x+1/(x-1)+(2-x^2)/(x^2-x))(ĐK:x\ne0; x\ne1) P=(x.(x+1))/((x-1)^2):[(x+1)/x+1/(x-1)+(2-x^2)/(x.(x-1))] P=(x.(x+1))/((x-1)^2):((x+1).(x-1)+x+2-x^2)/(x.(x-1)) P=(x.(x+1))/((x-1)^2):(x^2-1+x+2-x^2)/(x.(x-1)) P=(x.(x+1))/((x-1)^2):(x+1)/(x.(x-1)) P=(x.(x+1))/((x-1)^2).(x.(x-1))/(x+1) P=(x^2)/(x-1) Trả lời
2 bình luận về “Cho `P=(x^2 +x)/(x^2 -2x+1):((x+1)/x +1/(x-1)+(2-x^2)/(x^2-x))` Rút gọn `P`”