Trang chủ » Hỏi đáp » Môn Toán dùng hdt để rút gọn (3x^3+3x+1).(3x^3-3x+1)-(3x+1)^2 30/03/2025 dùng hdt để rút gọn (3x^3+3x+1).(3x^3-3x+1)-(3x+1)^2
(3x3 +3x +1).(3x3 -3x +1)-(3x +1)² = (3x3 )² – (3x +1)² – (3x +1)² = (3x +1)². [(3x3 )²-1] = (3x +1)². [(3x3)² -1²] = (3x +1)². (3x3+1) (3x3-1) = (9x2+6x+1) . (3x6)-1 = 9x6+6x3-18x2-6x Trả lời
(3x^3 + 3x + 1)(3x^3 – 3x + 1) – (3x + 1)^2 = (3x^3 + 1)^2 – (3x)^2 – (3x + 1)^2 = 9x^6 + 6x^3 + 1 – 9x^2 – 9x^2 – 6x – 1 = 9x^6 + 6x^3 – 18x^2 – 6x. ________________ Áp dụng HĐT : (1) : (A + B)^2 = A^2 + 2AB + B^2 (3) : A^2 – B^2 = (A – B)(A + B) Trả lời
2 bình luận về “dùng hdt để rút gọn (3x^3+3x+1).(3x^3-3x+1)-(3x+1)^2”