Trang chủ » Hỏi đáp » Môn Toán Giải bất phương trình sau: 9 – |-5x |+ 2x = 0 Chú ý ghi điều kiện 14/05/2023 Giải bất phương trình sau: 9 – |-5x |+ 2x = 0 Chú ý ghi điều kiện
Giải đáp: S = {3; (-9)/7} Lời giải và giải thích chi tiết: 9 – |-5x| + 2x = 0 <=> |-5x| = 2x + 9 ( Điều kiện để phương trình có nghiệm: -5x ≥ 0 <=> x ≤ 0 ) <=> \(\left[ \begin{array}{l}-5x = 2x + 9\\5x = 2x + 9\end{array} \right.\) <=> \(\left[ \begin{array}{l}-5x – 2x = 9\\5x – 2x = 9\end{array} \right.\) <=> \(\left[ \begin{array}{l}-7x = 9\\3x = 9\end{array} \right.\) <=> $\left[\begin{matrix} x = \dfrac{-9}{7} ™\\ x = 3 ™\end{matrix}\right.$ \text{Vậy: tập nghiệm của phương trình là:} S = {3; (-9)/7} Trả lời
Giải đáp: TH1: -5x 0 x 0 thì |-5x| = -5x. Ta có: 9 |-5x| + 2x = 0 9 + 5x + 2x = 0 7x = -9 x = (t/m) +, TH2: -5x < 0 x > 0 thì |-5x| = 5x. Ta có: 9 |-5x| + 2x = 0 9 5x +2x = 0 -3x = -9 x = 3 (t/m) Trả lời
2 bình luận về “Giải bất phương trình sau: 9 – |-5x |+ 2x = 0 Chú ý ghi điều kiện”