Trang chủ » Hỏi đáp » Môn Toán X+5/2023+x+4/2022=x+3/2021+x+2/2020 16/10/2023 X+5/2023+x+4/2022=x+3/2021+x+2/2020
(x+5)/2023+(x+4)/2022=(x+3)/2021+(x+2)/2020 <=>(x+5)/2023+(x+4)/2022-2=(x+3)/2021+(x+2)/2020-2 <=>((x+5)/2023-1)+((x+4)/2022-1)=((x+3)/2021-1)+((x+2)/2020-1) <=>(x-2018)/2023+(x-2018)/2023=(x-2018)/2021+(x-2018)/2020 <=>(x-2018)/2023+(x-2018)/2023-(x-2018)/2021-(x-2018)/2020=0 <=>(x-2018)(1/2023+1/2022-1/2021-1/2020)=0 Vì 1/2023+1/2022-1/2021-1/2020 \ne 0 Nên x-2018=0 x =2018 toVậy S={2018} Trả lời
Giải đáp: x = 2018 Lời giải và giải thích chi tiết: (x+5)/2023 + (x+4)/2022 = (x+3)/2021 + (x+2)/2020 <=> (x+5)/2023 -1 + (x+4)/2022 – 1 = (x+3)/2021 -1 + (x+2)/2020 – 1 <=> (x-2018)/2023 + (x-2018)/2022 = (x-2018)/2021 + (x-2018)/2020 <=> (x-2018)/2023 + (x-2018)/2022 – (x-2018)/2021 – (x-2018)/2020 = 0 <=> (x-2018).(1/2023 + 1/2022 – 1/2021 – 1/2020) = 0 <=> x – 2018 = 0 <=> x = 2018 Vậy x = 2018 Trả lời
2 bình luận về “X+5/2023+x+4/2022=x+3/2021+x+2/2020”