a) (12x ^ 4 * y ^ 3 + 8x ^ 3 * y ^ 2 – 4x * y ^ 2) / 2 * xy
b) (6x ^ 2 + 17x + 12) / (2x + 3)
c) (x ^ 3 + x ^ 2 – 2x) / (x + 2)
a) (12x ^ 4 * y ^ 3 + 8x ^ 3 * y ^ 2 – 4x * y ^ 2) / 2 * xy
b) (6x ^ 2 + 17x + 12) / (2x + 3)
c) (x ^ 3 + x ^ 2 – 2x) / (x + 2)
Câu hỏi mới
a)6{x^3}{y^2} + 4{x^2}y – 2y\\
b)3x + 4\\
c){x^2} – x
\end{array}$
a)\dfrac{{12{x^4}{y^3} + 8{x^3}{y^2} – 4x{y^2}}}{{2xy}}\\
= \dfrac{{2xy.\left( {6{x^3}{y^2} + 4{x^2}y – 2y} \right)}}{{2xy}}\\
= 6{x^3}{y^2} + 4{x^2}y – 2y\\
b)\dfrac{{\left( {6{x^2} + 17x + 12} \right)}}{{2x + 3}}\\
= \dfrac{{6{x^2} + 9x + 8x + 12}}{{2x + 3}}\\
= \dfrac{{3x.\left( {2x + 3} \right) + 4\left( {2x + 3} \right)}}{{2x + 3}}\\
= \dfrac{{\left( {2x + 3} \right)\left( {3x + 4} \right)}}{{2x + 3}}\\
= 3x + 4\\
c)\dfrac{{{x^3} + {x^2} – 2x}}{{x + 2}}\\
= \dfrac{{{x^3} + 2{x^2} – {x^2} – 2x}}{{x + 2}}\\
= \dfrac{{{x^2}\left( {x + 2} \right) – x\left( {x + 2} \right)}}{{x + 2}}\\
= \dfrac{{\left( {x + 2} \right)\left( {{x^2} – x} \right)}}{{x + 2}}\\
= {x^2} – x
\end{array}$