Cho hình bình hành ABCD (AB>AD) gọi E và K lần lượt là trung điểm của CD và AB , BD cắt AE , AC ,CK lần lượt tại N , O và

Cho hình bình hành ABCD (AB>AD) gọi E và K lần lượt là trung điểm của CD và AB , BD cắt AE , AC ,CK lần lượt tại N , O và I

Chứng minh rằng :

a) Tứ giác AECK là hình bình hành

b) Ba điểm E O K thẳng hàng

1 bình luận về “Cho hình bình hành ABCD (AB>AD) gọi E và K lần lượt là trung điểm của CD và AB , BD cắt AE , AC ,CK lần lượt tại N , O và”

  1. Giải đáp:
    Mà E, K lần lượt là trung điểm của CD và AB nên AK = EC VÀ AK // EC.
     Tứ giác AECK là hình bình hành (dấu hiệu nhận biết)
    b. Trong hình bình hành ABCD có O là giao điểm của hai đường chéo nên O là trung điểm của AC và BD (tính chất của hình bình hành)
    Mà AECK là hình bình hành nên O là trung điểm của EK.
     Ba điểm E, O, K thẳng hàng.
    Lời giải và giải thích chi tiết:
     

    Trả lời

Viết một bình luận

Câu hỏi mới