Trang chủ » Hỏi đáp » Môn Toán Tìm x: (x+2)^2-(x+2)(x-2)=0 x^2-7x+10=0 x^3+3x=3x^2+1 7x^2-28=0 2/3x(x^2-4)=0 2x.(3x-5)-(5-3x)=0 27/11/2024 Tìm x: (x+2)^2-(x+2)(x-2)=0 x^2-7x+10=0 x^3+3x=3x^2+1 7x^2-28=0 2/3x(x^2-4)=0 2x.(3x-5)-(5-3x)=0
Giải đáp: $\begin{array}{l}a)x = – 2\\b)x = 2;x = 5\\c)x = 1\\d)x = 2;x = – 2\\e)x = 0;x = – 2;x = 2\\f)x = \dfrac{5}{3};x = – \dfrac{1}{2}\end{array}$ Lời giải và giải thích chi tiết: $\begin{array}{l}a){\left( {x + 2} \right)^2} – \left( {x + 2} \right)\left( {x – 2} \right) = 0\\ \Leftrightarrow \left( {x + 2} \right)\left( {x + 2 – x + 2} \right) = 0\\ \Leftrightarrow \left( {x + 2} \right).4 = 0\\ \Leftrightarrow x + 2 = 0\\ \Leftrightarrow x = – 2\\Vậy\,x = – 2\\b){x^2} – 7x + 10 = 0\\ \Leftrightarrow {x^2} – 2x – 5x + 10 = 0\\ \Leftrightarrow \left( {x – 2} \right)\left( {x – 5} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x – 2 = 0\\x – 5 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = 5\end{array} \right.\\Vậy\,x = 2;x = 5\\c){x^3} + 3x = 3{x^2} + 1\\ \Leftrightarrow {x^3} – 3{x^2} + 3x – 1 = 0\\ \Leftrightarrow {\left( {x – 1} \right)^3} = 0\\ \Leftrightarrow x – 1 = 0\\ \Leftrightarrow x = 1\\Vậy\,x = 1\\d)7{x^2} – 28 = 0\\ \Leftrightarrow 7{x^2} = 28\\ \Leftrightarrow {x^2} = 4\\ \Leftrightarrow x = 2;x = – 2\\Vậy\,x = 2;x = – 2\\e)\dfrac{2}{3}x\left( {{x^2} – 4} \right) = 0\\ \Leftrightarrow \dfrac{2}{3}x\left( {x – 2} \right)\left( {x + 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x – 2 = 0\\x + 2 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\\x = – 2\end{array} \right.\\Vậy\,x = 0;x = – 2;x = 2\\f)2x\left( {3x – 5} \right) – \left( {5 – 3x} \right) = 0\\ \Leftrightarrow 2x\left( {3x – 5} \right) + \left( {3x – 5} \right) = 0\\ \Leftrightarrow \left( {3x – 5} \right)\left( {2x + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}3x – 5 = 0\\2x + 1 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{5}{3}\\x = \dfrac{{ – 1}}{2}\end{array} \right.\\Vậy\,x = \dfrac{5}{3};x = – \dfrac{1}{2}\end{array}$ Trả lời
1.(x+2)^2-(x+2)(x-2)=0 =>(x+2)[(x+2)-(x-2)]=0 =>(x+2)(x+2-x+2)=0 =>4(x+2)=0 =>x+2=0 =>x=-2 2.x^2-7x+10=0 =>x^2-2x-5x+10=0 =>x(x-2)-5(x-2)=0 =>(x-5)(x-2)=0 => \(\left[ \begin{array}{l}x-5=0\\x-2=0\end{array} \right.\) => \(\left[ \begin{array}{l}x=5\\x=2\end{array} \right.\) 3.x^3+3x=3x^2+1 =>x^3-3x^2+3x-1=0 =>(x-1)^3=0 =>x-1=0 =>x=1 4.7x^2-28=0 =>7(x^2-4)=0 =>7(x-2)(x+2)=0 => \(\left[ \begin{array}{l}x-2=0\\x+2=0\end{array} \right.\) => \(\left[ \begin{array}{l}x=2\\x=-2\end{array} \right.\) 5. 2/3 x(x^2-4)=0 =>2/3 x(x-2)(x+2)=0 => \(\left[ \begin{array}{l}x=0\\x-2=0\\x+2=0\end{array} \right.\) => \(\left[ \begin{array}{l}x=0\\x=2\\x=-2\end{array} \right.\) 6.2x(3x-5)-(5-3x)=0 =>2x(3x-5)+(3x-5)=0 =>(2x+1)(3x-5)=0 => \(\left[ \begin{array}{l}2x+1=0\\3x-5=0\end{array} \right.\) => \(\left[ \begin{array}{l}2x=-1\\3x=5\end{array} \right.\) => \(\left[ \begin{array}{l}x=-\dfrac{1}{2}\\x=\dfrac{5}{3}\end{array} \right.\) Trả lời
a)x = – 2\\
b)x = 2;x = 5\\
c)x = 1\\
d)x = 2;x = – 2\\
e)x = 0;x = – 2;x = 2\\
f)x = \dfrac{5}{3};x = – \dfrac{1}{2}
\end{array}$
a){\left( {x + 2} \right)^2} – \left( {x + 2} \right)\left( {x – 2} \right) = 0\\
\Leftrightarrow \left( {x + 2} \right)\left( {x + 2 – x + 2} \right) = 0\\
\Leftrightarrow \left( {x + 2} \right).4 = 0\\
\Leftrightarrow x + 2 = 0\\
\Leftrightarrow x = – 2\\
Vậy\,x = – 2\\
b){x^2} – 7x + 10 = 0\\
\Leftrightarrow {x^2} – 2x – 5x + 10 = 0\\
\Leftrightarrow \left( {x – 2} \right)\left( {x – 5} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x – 2 = 0\\
x – 5 = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 2\\
x = 5
\end{array} \right.\\
Vậy\,x = 2;x = 5\\
c){x^3} + 3x = 3{x^2} + 1\\
\Leftrightarrow {x^3} – 3{x^2} + 3x – 1 = 0\\
\Leftrightarrow {\left( {x – 1} \right)^3} = 0\\
\Leftrightarrow x – 1 = 0\\
\Leftrightarrow x = 1\\
Vậy\,x = 1\\
d)7{x^2} – 28 = 0\\
\Leftrightarrow 7{x^2} = 28\\
\Leftrightarrow {x^2} = 4\\
\Leftrightarrow x = 2;x = – 2\\
Vậy\,x = 2;x = – 2\\
e)\dfrac{2}{3}x\left( {{x^2} – 4} \right) = 0\\
\Leftrightarrow \dfrac{2}{3}x\left( {x – 2} \right)\left( {x + 2} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x – 2 = 0\\
x + 2 = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x = 2\\
x = – 2
\end{array} \right.\\
Vậy\,x = 0;x = – 2;x = 2\\
f)2x\left( {3x – 5} \right) – \left( {5 – 3x} \right) = 0\\
\Leftrightarrow 2x\left( {3x – 5} \right) + \left( {3x – 5} \right) = 0\\
\Leftrightarrow \left( {3x – 5} \right)\left( {2x + 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
3x – 5 = 0\\
2x + 1 = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \dfrac{5}{3}\\
x = \dfrac{{ – 1}}{2}
\end{array} \right.\\
Vậy\,x = \dfrac{5}{3};x = – \dfrac{1}{2}
\end{array}$