Tìm x: (x+2)^2-(x+2)(x-2)=0 x^2-7x+10=0 x^3+3x=3x^2+1 7x^2-28=0 2/3x(x^2-4)=0 2x.(3x-5)-(5-3x)=0

Tìm x:
(x+2)^2-(x+2)(x-2)=0
x^2-7x+10=0
x^3+3x=3x^2+1
7x^2-28=0
2/3x(x^2-4)=0
2x.(3x-5)-(5-3x)=0

2 bình luận về “Tìm x: (x+2)^2-(x+2)(x-2)=0 x^2-7x+10=0 x^3+3x=3x^2+1 7x^2-28=0 2/3x(x^2-4)=0 2x.(3x-5)-(5-3x)=0”

  1. Giải đáp: $\begin{array}{l}
    a)x =  – 2\\
    b)x = 2;x = 5\\
    c)x = 1\\
    d)x = 2;x =  – 2\\
    e)x = 0;x =  – 2;x = 2\\
    f)x = \dfrac{5}{3};x =  – \dfrac{1}{2}
    \end{array}$
     
    Lời giải và giải thích chi tiết:
    $\begin{array}{l}
    a){\left( {x + 2} \right)^2} – \left( {x + 2} \right)\left( {x – 2} \right) = 0\\
     \Leftrightarrow \left( {x + 2} \right)\left( {x + 2 – x + 2} \right) = 0\\
     \Leftrightarrow \left( {x + 2} \right).4 = 0\\
     \Leftrightarrow x + 2 = 0\\
     \Leftrightarrow x =  – 2\\
    Vậy\,x =  – 2\\
    b){x^2} – 7x + 10 = 0\\
     \Leftrightarrow {x^2} – 2x – 5x + 10 = 0\\
     \Leftrightarrow \left( {x – 2} \right)\left( {x – 5} \right) = 0\\
     \Leftrightarrow \left[ \begin{array}{l}
    x – 2 = 0\\
    x – 5 = 0
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = 2\\
    x = 5
    \end{array} \right.\\
    Vậy\,x = 2;x = 5\\
    c){x^3} + 3x = 3{x^2} + 1\\
     \Leftrightarrow {x^3} – 3{x^2} + 3x – 1 = 0\\
     \Leftrightarrow {\left( {x – 1} \right)^3} = 0\\
     \Leftrightarrow x – 1 = 0\\
     \Leftrightarrow x = 1\\
    Vậy\,x = 1\\
    d)7{x^2} – 28 = 0\\
     \Leftrightarrow 7{x^2} = 28\\
     \Leftrightarrow {x^2} = 4\\
     \Leftrightarrow x = 2;x =  – 2\\
    Vậy\,x = 2;x =  – 2\\
    e)\dfrac{2}{3}x\left( {{x^2} – 4} \right) = 0\\
     \Leftrightarrow \dfrac{2}{3}x\left( {x – 2} \right)\left( {x + 2} \right) = 0\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = 0\\
    x – 2 = 0\\
    x + 2 = 0
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = 0\\
    x = 2\\
    x =  – 2
    \end{array} \right.\\
    Vậy\,x = 0;x =  – 2;x = 2\\
    f)2x\left( {3x – 5} \right) – \left( {5 – 3x} \right) = 0\\
     \Leftrightarrow 2x\left( {3x – 5} \right) + \left( {3x – 5} \right) = 0\\
     \Leftrightarrow \left( {3x – 5} \right)\left( {2x + 1} \right) = 0\\
     \Leftrightarrow \left[ \begin{array}{l}
    3x – 5 = 0\\
    2x + 1 = 0
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = \dfrac{5}{3}\\
    x = \dfrac{{ – 1}}{2}
    \end{array} \right.\\
    Vậy\,x = \dfrac{5}{3};x =  – \dfrac{1}{2}
    \end{array}$

    Trả lời
  2. 1.(x+2)^2-(x+2)(x-2)=0
    =>(x+2)[(x+2)-(x-2)]=0
    =>(x+2)(x+2-x+2)=0
    =>4(x+2)=0
    =>x+2=0
    =>x=-2
    2.x^2-7x+10=0
    =>x^2-2x-5x+10=0
    =>x(x-2)-5(x-2)=0
    =>(x-5)(x-2)=0
    => \(\left[ \begin{array}{l}x-5=0\\x-2=0\end{array} \right.\) 
    => \(\left[ \begin{array}{l}x=5\\x=2\end{array} \right.\) 
    3.x^3+3x=3x^2+1
    =>x^3-3x^2+3x-1=0
    =>(x-1)^3=0
    =>x-1=0
    =>x=1
    4.7x^2-28=0
    =>7(x^2-4)=0
    =>7(x-2)(x+2)=0
    => \(\left[ \begin{array}{l}x-2=0\\x+2=0\end{array} \right.\) 
    => \(\left[ \begin{array}{l}x=2\\x=-2\end{array} \right.\) 
    5. 2/3 x(x^2-4)=0
    =>2/3 x(x-2)(x+2)=0
    => \(\left[ \begin{array}{l}x=0\\x-2=0\\x+2=0\end{array} \right.\) 
    => \(\left[ \begin{array}{l}x=0\\x=2\\x=-2\end{array} \right.\) 
    6.2x(3x-5)-(5-3x)=0
    =>2x(3x-5)+(3x-5)=0
    =>(2x+1)(3x-5)=0
    => \(\left[ \begin{array}{l}2x+1=0\\3x-5=0\end{array} \right.\) 
    => \(\left[ \begin{array}{l}2x=-1\\3x=5\end{array} \right.\) 
    => \(\left[ \begin{array}{l}x=-\dfrac{1}{2}\\x=\dfrac{5}{3}\end{array} \right.\) 

    Trả lời

Viết một bình luận

Câu hỏi mới