Trang chủ » Hỏi đáp » Môn Toán Tìm x biết: 5x^2 – x – 3 = 2x(x – 1) – 1 + x^2 10/01/2025 Tìm x biết: 5x^2 – x – 3 = 2x(x – 1) – 1 + x^2
Giải đáp: 5x^{2}-x-3=2x.(x-1)-1+x^{2} => 5x^{2}-x-3=2x^{2}-2x-1+x^{2} => 5x^{2}-x-3=3x^{2}-2x-1 => 5x^{2}-x-3-3x^{2}+2x+1=0 => 2x^{2}+x-2=0 => 2.[x^{2}+2.x.\frac{1}{2}+(\frac{1}{2})^{2}-\frac{7}{4}]=0 =>(x+\frac{1}{2})^{2}=\frac{17}{4} => (x+\frac{1}{2})^{2}=(\pm\sqrt{\frac{17}{4}})^{2} => \(\left[ \begin{array}{l}x+\dfrac{1}{2}=\sqrt{\dfrac{17}{4}}\\x+\dfrac{1}{2}=-\sqrt{\dfrac{17}{4}}\end{array} \right.\) => \(\left[ \begin{array}{l}x=\dfrac{\sqrt{17}}{2}-\dfrac{1}{2}\\x=\dfrac{-\sqrt{17}}{2}-\dfrac{1}{2}\end{array} \right.\) => \(\left[ \begin{array}{l}x=\dfrac{\sqrt{17}-1}{2}\\x=\dfrac{-\sqrt{17}-1}{2}\end{array} \right.\) => x=\frac{\pm\sqrt{17}-1}{2} Vậy x=\frac{\pm\sqrt{17}-1}{2} #DYNA Trả lời
5x^2-x-3=2x(x-1)-1+x^2 =>5x^2-x-3=2x^2-2x-1+x^2 =>5x^2-x-3=3x^2-2x-1 =>5x^2-x-3-3x^2+2x+1=0 =>2x^2+x-2=0 =>2(x^2+1/2 x-1)=0 =>x^2+1/2 x-1=0 =>x^2+2.x .1/4+(1/4)^2-17/16=0 =>(x+1/4)^2=17/16 TH1:(x+1/4)^2=( – $\dfrac{ \sqrt[]{17}}{4}$ )^2 =>x+1/4=- $\dfrac{\sqrt[]{17}}{4}$ =>x= $\dfrac{-1-\sqrt[]{17}}{4}$ TH2:(x+1/4)^2=( $\dfrac{ \sqrt[]{17}}{4}$ )^2 =>x+1/4= $\dfrac{\sqrt[]{17}}{4}$ =>x= $\dfrac{-1+\sqrt[]{17}}{4}$ =>x= $\dfrac{-1±\sqrt[]{17}}{4}$ Trả lời
2 bình luận về “Tìm x biết: 5x^2 – x – 3 = 2x(x – 1) – 1 + x^2”