Trang chủ » Hỏi đáp » Môn Toán tìm x biết a) $x^{3}$ + 2x – 3 =0 b) $x^{3}$ – $9x^{2}$ +6x + 16=0 c) $x^{3}$ – 2x -4=0 27/12/2024 tìm x biết a) $x^{3}$ + 2x – 3 =0 b) $x^{3}$ – $9x^{2}$ +6x + 16=0 c) $x^{3}$ – 2x -4=0
$#duong612009$ a, x^3 + 2x – 3= 0 => x^3 – x + 3x – 3= 0 => x(x^2 – 1) + 3(x – 1) = 0 => x(x – 1)(x + 1) + 3(x – 1) = 0 => (x – 1)[x(x + 1) + 3] = 0 => (x – 1)(x^2 + x + 3) = 0 Vì x^2 + x + 3 = x^2 + 2.x.1/2 + (1/2)^2 + (11)/4 = (x + 1/2)^2 + (11)/4 > 0 => x – 1= 0 => x = 1 Vậy x =1 b, x^3 – 9x^2 + 6x + 16 = 0 => x^3 – 8x^2 – x^2 + 8x – 2x + 16 = 0 => x^2 (x – 8) – x(x – 8) – 2(x – 8) = 0 => (x – 8)(x^2 – x – 2) = 0 => (x – 8)(x^2 – 2x + x – 2) = 0 => (x – 8)[x(x – 2) + (x – 1)] = 0 => (x – 8)(x – 2)(x + 1) = 0 => x – 8 = 0 hoặc x – 2 =0 hoặc x + 1 = 0 => x = 8 hoặc x = 2 hoặc x = -1 Vậy x \in {-1,2,8} c, x^3 – 2x – 4 = 0 => x^3 – 2x^2 + 2x^2 – 4x + 2x – 4 = 0 => x^2 (x – 2) + 2x(x – 2) + 2(x – 2) = 0 => (x – 2)(x^2 + 2x + 2) = 0 Vì x^2 + 2x + 2 = x^2 + 2x + 1 + 1 = (x + 1)^2 + 1 > 0 => x – 2 = 0 => x = 2 Vậy x = 2 Trả lời
1 bình luận về “tìm x biết a) $x^{3}$ + 2x – 3 =0 b) $x^{3}$ – $9x^{2}$ +6x + 16=0 c) $x^{3}$ – 2x -4=0”