Tìm gtln của biểu thức: A=-2x^2=7x-18 B=-x^2+6x-11 C=-2x^2-y^2+2x+5y^2+10x-22y+28 giúp em vs ạ!!

Tìm gtln của biểu thức:
A=-2x^2=7x-18
B=-x^2+6x-11
C=-2x^2-y^2+2x+5y^2+10x-22y+28
giúp em vs ạ!!

1 bình luận về “Tìm gtln của biểu thức: A=-2x^2=7x-18 B=-x^2+6x-11 C=-2x^2-y^2+2x+5y^2+10x-22y+28 giúp em vs ạ!!”

  1. Giải đáp + Lời giải và giải thích chi tiết:
    Ta có: A = -2x^2 + 7x – 18
                 = -2(x^2 – 7/2x + 9)
                 = -2(x^2 – 2. 7/4x + 49/16 + 95/16) 
                 = -2(x – 7/4)^2 – 95/8
    Do (x – 7/4)^2 ge 0 => -2(x – 7/4)^2 leq 0
                  => -2(x – 7/4)^2 – 95/8 leq -95/8 AA x in RR
    Dấu “=” xảy ra khi x – 7/4 = 0 <=> x = 7/4
    Vậy: Max_A = -95/8 <=> x = 7/4
    $\\$
    Ta cps: B = -x^2 + 6x – 11
                    = -(x^2 – 6x + 11)
                    = -(x^2 – 2. 3. x + 9 + 2)
                    = -(x – 3)^2 – 2
    Do (x – 3)^2 ge 0 => – (x – 3)^2 leq 0 => -(x – 3)^2 – 2 leq -2 AA x in RR
    Dấu “=” xảy ra khi x – 3 = 0 <=> x = 3
    Vậy: Max_B = -2 <=> x = 3
    $\\$
    Ta có: C = -2x^2 – y^2 + 2x + 5y^2 + 10x – 22y + 28
                  = -x^2 – x^2 – y^2 + 2x + 5y^2 + 10x – 22y – 1 – 25 + 54
                  = (-x^2 + 2x – 1) + (-x^2 + 10x – 25) + (4y^2 – 22y + 121/4) + 95/4
                  = -(x^2 – 2x + 1) – (x^2 – 10x + 25) + (4y^2 – 22y + 121/4) + 95/4
                  = -(x – 1)^2 – (x – 5)^2 + (2y – 11/2)^2 + 95/4
    Do {(-(x – 1)^2 leq 0),(-(x – 5)^2 leq 0),((2y – 11/2)^2 ge 0):}
           => -(x – 1)^2 – (x – 5)^2 + (2y – 11/2)^2 leq 0
          => -(x – 1)^2 – (x – 5)^2 + (2y – 11/2)^2 + 95/4 leq 95/4 AA x, y in RR 
    Vậy: Max_C = 95/4.

    Trả lời

Viết một bình luận

Câu hỏi mới