Trang chủ » Hỏi đáp » Môn Toán x*2-5x+m-2=0 tìm m để p.trình có 2 nghiệm x1,x2 thỏa mãn 2.(1/căn x1+1/căn x2)=3 23/07/2023 x*2-5x+m-2=0 tìm m để p.trình có 2 nghiệm x1,x2 thỏa mãn 2.(1/căn x1+1/căn x2)=3
Giải đáp: $m = 6$ Lời giải và giải thích chi tiết: $\begin{array}{l}{x^2} – 5x + m – 2 = 0\\\Delta > 0\\ \Leftrightarrow {5^2} – 4.\left( {m – 2} \right) > 0\\ \Leftrightarrow 25 – 4m + 8 > 0\\ \Leftrightarrow 4m < 33\\ \Leftrightarrow m < \dfrac{{33}}{4}\\Theo\,Viet:\left\{ \begin{array}{l}{x_1} + {x_2} = 5\\{x_1}{x_2} = m – 2\end{array} \right.\\Dkxd:{x_1} > 0;{x_2} > 0\\ \Leftrightarrow {x_1}.{x_2} > 0\\ \Leftrightarrow m – 2 > 0\\ \Leftrightarrow m > 2\\2.\left( {\dfrac{1}{{\sqrt {{x_1}} }} + \dfrac{1}{{\sqrt {{x_2}} }}} \right) = 3\\ \Leftrightarrow \dfrac{{\sqrt {{x_2}} + \sqrt {{x_1}} }}{{\sqrt {{x_1}{x_2}} }} = \dfrac{3}{2}\\ \Leftrightarrow \dfrac{{{{\left( {\sqrt {{x_2}} + \sqrt {{x_1}} } \right)}^2}}}{{{x_1}{x_2}}} = \dfrac{9}{4}\\ \Leftrightarrow \dfrac{{{x_1} + {x_2} + 2\sqrt {{x_1}{x_2}} }}{{{x_1}{x_2}}} = \dfrac{9}{4}\\ \Leftrightarrow 4.\left( {5 + 2\sqrt {m – 2} } \right) = 9.\left( {m – 2} \right)\\ \Leftrightarrow 20 + 8\sqrt {m – 2} = 9\left( {m – 2} \right)\\ \Leftrightarrow 9\left( {m – 2} \right) – 8\sqrt {m – 2} – 20 = 0\\ \Leftrightarrow 9{\left( {\sqrt {m – 2} } \right)^2} – 18\sqrt {m – 2} + 10\sqrt {m – 2} – 20 = 0\\ \Leftrightarrow \left( {\sqrt {m – 2} – 2} \right)\left( {9\sqrt {m – 2} + 10} \right) = 0\\ \Leftrightarrow \sqrt {m – 2} – 2 = 0\\ \Leftrightarrow \sqrt {m – 2} = 2\\ \Leftrightarrow m – 2 = 4\\ \Leftrightarrow m = 6\left( {tm} \right)\end{array}$ Trả lời
{x^2} – 5x + m – 2 = 0\\
\Delta > 0\\
\Leftrightarrow {5^2} – 4.\left( {m – 2} \right) > 0\\
\Leftrightarrow 25 – 4m + 8 > 0\\
\Leftrightarrow 4m < 33\\
\Leftrightarrow m < \dfrac{{33}}{4}\\
Theo\,Viet:\left\{ \begin{array}{l}
{x_1} + {x_2} = 5\\
{x_1}{x_2} = m – 2
\end{array} \right.\\
Dkxd:{x_1} > 0;{x_2} > 0\\
\Leftrightarrow {x_1}.{x_2} > 0\\
\Leftrightarrow m – 2 > 0\\
\Leftrightarrow m > 2\\
2.\left( {\dfrac{1}{{\sqrt {{x_1}} }} + \dfrac{1}{{\sqrt {{x_2}} }}} \right) = 3\\
\Leftrightarrow \dfrac{{\sqrt {{x_2}} + \sqrt {{x_1}} }}{{\sqrt {{x_1}{x_2}} }} = \dfrac{3}{2}\\
\Leftrightarrow \dfrac{{{{\left( {\sqrt {{x_2}} + \sqrt {{x_1}} } \right)}^2}}}{{{x_1}{x_2}}} = \dfrac{9}{4}\\
\Leftrightarrow \dfrac{{{x_1} + {x_2} + 2\sqrt {{x_1}{x_2}} }}{{{x_1}{x_2}}} = \dfrac{9}{4}\\
\Leftrightarrow 4.\left( {5 + 2\sqrt {m – 2} } \right) = 9.\left( {m – 2} \right)\\
\Leftrightarrow 20 + 8\sqrt {m – 2} = 9\left( {m – 2} \right)\\
\Leftrightarrow 9\left( {m – 2} \right) – 8\sqrt {m – 2} – 20 = 0\\
\Leftrightarrow 9{\left( {\sqrt {m – 2} } \right)^2} – 18\sqrt {m – 2} + 10\sqrt {m – 2} – 20 = 0\\
\Leftrightarrow \left( {\sqrt {m – 2} – 2} \right)\left( {9\sqrt {m – 2} + 10} \right) = 0\\
\Leftrightarrow \sqrt {m – 2} – 2 = 0\\
\Leftrightarrow \sqrt {m – 2} = 2\\
\Leftrightarrow m – 2 = 4\\
\Leftrightarrow m = 6\left( {tm} \right)
\end{array}$