Trang chủ » Hỏi đáp » Môn Toán `2sin^3 x – sinx = 2cos^3 x – cosx` 27/04/2023 `2sin^3 x – sinx = 2cos^3 x – cosx`
Giải đáp + Lời giải và giải thích chi tiết: $\begin{array}{l}2{\sin ^3}x – \sin x = 2{\cos ^3}x – \cos x\\ \Leftrightarrow 2{\sin ^3}x – 2{\cos ^3}x + \cos x – \sin x = 0\\ \Leftrightarrow 2\left( {\sin x – \cos x} \right)\left( {{{\sin }^2}x + {{\cos }^2}x + \sin x\cos x} \right) – \left( {\sin x – \cos x} \right) = 0\\ \Leftrightarrow \left( {\sin x – \cos x} \right)\left( {2{{\sin }^2}x + 2{{\cos }^2}x + 2\sin x\cos x – 1} \right) = 0\\ \Leftrightarrow \left( {\sin x – \cos x} \right)\left( {2 + \sin 2x – 1} \right) = 0\\ \Leftrightarrow \left( {\sin x – \cos x} \right)\left( {\sin 2x + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sin x – \cos x = 0\\\sin 2x + 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\sqrt 2 \sin \left( {x – \dfrac{\pi }{4}} \right) = 0\\\sin 2x = – 1\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x – \dfrac{\pi }{4} = k\pi \\2x = – \dfrac{\pi }{2} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{4} + k\pi \\x = – \dfrac{\pi }{4} + k\pi \end{array} \right. \Leftrightarrow x = \dfrac{\pi }{4} + \dfrac{{k\pi }}{2}\left( {k \in \mathbb Z} \right)\end{array}$ #Pô Trả lời
2{\sin ^3}x – \sin x = 2{\cos ^3}x – \cos x\\
\Leftrightarrow 2{\sin ^3}x – 2{\cos ^3}x + \cos x – \sin x = 0\\
\Leftrightarrow 2\left( {\sin x – \cos x} \right)\left( {{{\sin }^2}x + {{\cos }^2}x + \sin x\cos x} \right) – \left( {\sin x – \cos x} \right) = 0\\
\Leftrightarrow \left( {\sin x – \cos x} \right)\left( {2{{\sin }^2}x + 2{{\cos }^2}x + 2\sin x\cos x – 1} \right) = 0\\
\Leftrightarrow \left( {\sin x – \cos x} \right)\left( {2 + \sin 2x – 1} \right) = 0\\
\Leftrightarrow \left( {\sin x – \cos x} \right)\left( {\sin 2x + 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\sin x – \cos x = 0\\
\sin 2x + 1 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
\sqrt 2 \sin \left( {x – \dfrac{\pi }{4}} \right) = 0\\
\sin 2x = – 1
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x – \dfrac{\pi }{4} = k\pi \\
2x = – \dfrac{\pi }{2} + k2\pi
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = \dfrac{\pi }{4} + k\pi \\
x = – \dfrac{\pi }{4} + k\pi
\end{array} \right. \Leftrightarrow x = \dfrac{\pi }{4} + \dfrac{{k\pi }}{2}\left( {k \in \mathbb Z} \right)
\end{array}$